Conversion from CO 2 to C 2 H 4 is important for the development of energy and the environment, but the high energy barrier of hydrogenation of the *CO intermediate and C−C coupling step tend to result in C 1 compounds as the main product and thus restrict the generation of C 2 H 4 . Here, we report a metal−organic framework (denoted as PcCu-Cu-O), composed of 2,3,9,10,16,17,23,24-octahydroxyphthalo-cyaninato)copper(II) (PcCu-(OH) 8 ) ligands and the square-planar CuO 4 nodes, as the electrocatalyst for CO 2 to C 2 H 4 . Compared with the discrete molecular copper-phthalocyanine (Faradaic efficiency (FE) of C 2 H 4 = 25%), PcCu-Cu-O exhibits much higher performance for electrocatalytic reduction of CO 2 to C 2 H 4 with a FE of 50(1)% and a current density of 7.3 mA cm −2 at the potential of −1.2 V vs RHE in 0.1 M KHCO 3 solution, representing the best performance reported to date. In-situ infrared spectroscopy and control experiments suggested that the enhanced electrochemical performance may be ascribed to the synergistic effect between the CuPc unit and the CuO 4 unit, namely the CO on the CO-producing site (CuO 4 site) can efficiently migrate and dimerize with the *CO intermediate adsorbed on the C 2 H 4 -producing site (CuPc), giving a lower C−C dimerization energy barrier.
Immune mediators associated with human tuberculosis (TB) remain poorly defined. This study quantified levels of lung immune mediator gene expression at the time of diagnosis and during anti-TB treatment using cells obtained by induced sputum. Upon comparison to patients with other infectious lung diseases and volunteers, active pulmonary TB cases expressed significantly higher levels of mediators that counteract Th1-type and innate immunity. Despite the concomitant heightened levels of Th1-type mediators, immune activation may be rendered ineffectual by high levels of intracellular (SOCS and IRAK-M) and extracellular (IL-10 and TGF-βRII, IL-1Rn, and IDO) immune suppressive mediators. These modulators are a direct response to Mycobacterium tuberculosis as, by day 30 of anti-TB treatment, many suppressive factors declined to that of controls whereas most Th1-type and innate immune mediators rose above pretreatment levels. Challenge of human immune cells with M. tuberculosis in vitro up-regulated these immune modulators as well. The observed low levels of NO synthase-2 produced by alveolar macrophages at TB diagnosis, along with the heightened amounts of suppressive mediators, support the conclusion that M. tuberculosis actively promotes down-modulatory mediators to counteract Th1-type and innate immunity as an immunopathological strategy. Our data highlight the potential application of immune mediators as surrogate markers for TB diagnosis or treatment response.
Metal-organic frameworks (MOFs) have attracted much attention over the past two decades due to their highly promising applications not only in the fields of gas storage, separation, catalysis, drug delivery, and sensors, but also in relatively new fields such as electric, magnetic, and optical materials resulting from their extremely high surface areas, open channels and large pore cavities compared with traditional porous materials like carbon and inorganic zeolites. Particularly, MOFs involving pores within the mesoscopic scale possess unique textural properties, leading to a series of research in the design and applications of mesoporous MOFs. Unlike previous Reviews, apart from focusing on recent advances in the synthetic routes, unique characteristics and applications of mesoporous MOFs, this Review also mentions the derivatives, composites, and hierarchical MOF-based systems that contain mesoporosity, and technical boundaries and challenges brought by the drawbacks of mesoporosity. Moreover, this Review subsequently reveals promising perspectives of how recently discovered approaches to different morphologies of MOFs (not necessarily entirely mesoporous) and their corresponding performances can be extended to minimize the shortcomings of mesoporosity, thus providing a wider and brighter scope of future research into mesoporous MOFs, but not just limited to the finite progress in the target substances alone.
Reducing CO2 into fuels via photochemical reactions relies on highly efficient photocatalytic systems. Herein, we report a new and efficient photocatalytic system for CO2 reduction. Driven by electrostatic attraction, an anionic metal–organic framework Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) as host and a cationic photosensitizer [Ru(phen)3]2+ (phen = 1,10-phenanthroline) as guest were self-assembled into a photocatalytic system Ru@Cu-HHTP, which showed high activity for photocatalytic CO2 reduction under laboratory light source (CO production rate of 130(5) mmol g–1 h–1, selectivity of 92.9%) or natural sunlight (CO production rate of 69.5 mmol g–1 h–1, selectivity of 91.3%), representing the remarkable photocatalytic CO2 reduction performance. More importantly, the photosensitizer [Ru(phen)3]2+ in Ru@Cu-HHTP is only about 1/500 in quantity reported in the literature. Theoretical calculations and control experiments suggested that the assembly of the catalysts and photosensitizers via electrostatic attraction interactions can provide a better charge transfer efficiency, resulting in high performance for photocatalytic CO2 reduction.
Human tuberculosis (TB) is caused by the bacillus Mycobacterium tuberculosis, a subspecies of the M. tuberculosis complex (MTC) of mycobacteria. Postgenomic dissection of the M. tuberculosis proteome is ongoing and critical to furthering our understanding of factors mediating M. tuberculosis pathobiology. Towards this end, a 32-kDa putative glyoxalase in the culture filtrate (CF) of growing M. tuberculosis (originally annotated as Rv0577 and hereafter designated CFP32) was identified, cloned, and characterized. The cfp32 gene is MTC restricted, and the gene product is expressed ex vivo as determined by the respective Southern and Western blot testing of an assortment of mycobacteria. Moreover, the cfp32 gene sequence is conserved within the MTC, as no polymorphisms were found in the tested cfp32 PCR products upon sequence analysis. Western blotting of M. tuberculosis subcellular fractions localized CFP32 predominantly to the CF and cytosolic compartments. Data to support the in vivo expression of CFP32 were provided by the serum recognition of recombinant CFP32 in 32% of TB patients by enzyme-linked immunosorbent assay (ELISA) as well as the direct detection of CFP32 by ELISA in the induced sputum samples from 56% of pulmonary TB patients. Of greatest interest was the observation that, per sample, sputum CFP32 levels (a potential indicator of increasing bacterial burden) correlated with levels of expression in sputum of interleukin-10 (an immunosuppressive cytokine and a putative contributing factor to disease progression) but not levels of gamma interferon (a key cytokine in the protective immune response in TB), as measured by ELISA. Combined, these data suggest that CFP32 serves a necessary biological function(s) in tubercle bacilli and may contribute to the M. tuberculosis pathogenic mechanism. Overall, CFP32 is an attractive target for drug and vaccine design as well as new diagnostic strategies.The Mycobacterium tuberculosis complex (MTC) is a group of highly related pathogenic mycobacteria that include M. tuberculosis, Mycobacterium africanum (subtypes I and II), Mycobacterium bovis (along with the attenuated M. bovis bacillus Calmette-Guérin [BCG] vaccine strain), Mycobacterium bovis subsp. caprae, and Mycobacterium microti (13). The MTC taxon is extraordinary in that its members exhibit a restricted number of fixed single-nucleotide polymorphisms between subspecies but differ from one another by the presence or absence of large chromosomal deletion loci, severity of disease, and mammalian host spectra (13,43,66
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.