Gastric cancer is one of the most common malignant cancers globally. Chemotherapy resistance remains a major obstacle in the treatment of gastric cancer, and the molecular mechanisms underlying drug resistance are still not well understood. We previously reported that Zipper interacting protein kinase (ZIPK), also known as death‐associated protein kinase3, exerts an oncogenic effect on gastric cancer via activation of Akt/NF‐κB signaling and promotion of stemness. Here, we explored the roles of ZIPK in cisplatin resistance. We report that ZIPK enhances cell proliferation and invasion and reduces the antitumor activity of cisplatin in gastric cancer. In addition, our western blot data suggest that ZIPK activated the IL‐6/STAT3 signaling pathway. Furthermore, ZIPK increased the expression of IL‐6 and multidrug‐resistance genes. Using the STAT3 inhibitor stattic to block the IL‐6/STAT3 signaling pathway strongly increased the sensitivity of ZIPK‐expressed cells to cisplatin. In conclusion, ZIPK may play a role in cisplatin resistance through activation of the IL‐6/ STAT3 signaling pathway. Inhibition of STAT3 in gastric cancer overexpressing ZIPK might have potential to improve the efficacy of cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.