Imbalanced data are a major factor for degrading the performance of software defect models. Software defect dataset is imbalanced in nature, i.e., the number of non-defect-prone modules is far more than that of defect-prone ones, which results in the bias of classifiers on the majority class samples. In this paper, we propose a novel credibility-based imbalance boosting (CIB) method in order to address the class-imbalance problem in software defect proneness prediction. The method measures the credibility of synthetic samples based on their distribution by introducing a credit factor to every synthetic sample, and proposes a weight updating scheme to make the base classifiers focus on synthetic samples with high credibility and real samples. Experiments are performed on 11 NASA datasets and nine PROMISE datasets by comparing CIB with MAHAKIL, AdaC2, AdaBoost, SMOTE, RUS, No sampling method in terms of four performance measures, i.e., area under the curve (AUC), F1, AGF, and Matthews correlation coefficient (MCC). Wilcoxon sign-ranked test and Cliff’s δ are separately used to perform statistical test and calculate effect size. The experimental results show that CIB is a more promising alternative for addressing the class-imbalance problem in software defect-prone prediction as compared with previous methods.
Agriculture has benefited greatly from the rise of big data and high-performance computing. The acquisition and analysis of data across biological scales have resulted in strategies modeling inter- actions between plant genotype and environment, models of root architecture that provide insight into resource utilization, and the elucidation of cell-to-cell communication mechanisms that are instrumental in plant development. Image segmentation and machine learning approaches for interpreting plant image data are among many of the computational methodologies that have evolved to address challenging agricultural and biological problems. These approaches have led to contributions such as the accelerated identification of gene that modulate stress responses in plants and automated high-throughput phenotyping for early detection of plant diseases. The continued acquisition of high throughput imaging across multiple biological scales provides opportunities to further push the boundaries of our understandings quicker than ever before. In this review, we explore the current state of the art methodologies in plant image segmentation and machine learning at the agricultural, organ, and cellular scales in plants. We show how the methodologies for segmentation and classification differ due to the diversity of physical characteristics found at these different scales. We also discuss the hardware technologies most commonly used at these different scales, the types of quantitative metrics that can be extracted from these images, and how the biological mechanisms by which plants respond to abiotic/biotic stresses or genotypic modifications can be extracted from these approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.