BackgroundMultiple studies have investigated the effect of perioperative blood transfusion (PBT) for patients with radical cystectomy (RC), but the results have been inconsistent. We conducted a systematic review and meta-analysis to investigate the relationship between PBT and the clinical outcomes of RC patients.MethodsWe searched MEDLINE, EMBASE, the Cochrane library and BIOSIS previews to identify relevant literature for studies that focused on the relationship of PBT and outcomes of patients undergoing RC. A fixed or random effects model was used in this meta-analysis to calculate the pooled hazard ratio (HR) with 95% confidence intervals (CIs).ResultsA total of 7080 patients in 6 studies matched the selection criteria. Aggregation of the data suggested that PBT in patients who underwent RC correlated with increased all-cause mortality, cancer-specific mortality and cancer recurrence. The combined HRs were 1.19 (n = 6 studies, 95% CI: 1.11–1.27, Z = 4.71, P<0.00001), 1.17 (n = 4 studies, 95% CI: 1.06–1.30, Z = 3.06, P = 0.002), 1.14 (n = 3 studies, 95% CI: 1.03–1.27, Z = 2.50, P = 0.01), respectively. The all-cause mortality associated with PBT did not vary by the characteristics of the study, including number of study participants, follow-up period and the median blood transfusion ratio of the study.ConclusionOur data showed that PBT significantly increased the risks of all-cause mortality, cancer-specific mortality and cancer recurrence in patients undergoing RC for bladder cancer.
A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cells co-cultured simultaneously. This simulation system comprises perfusion equipment, matrigel channel units, a medium channel and four indirect contact culture chambers, allowing four types of cells to simultaneously interact through soluble biological factors and metabolites. With this system, bladder cancer cells (T24) with a tendency to form a ‘reticular’ structure under 3 dimensional culture conditions were observed in real time. The microenvironment characteristics of paracrine interactions and cell motility were successfully simulated in this system. The phenotype change process in stromal cells was successfully reproduced in this system by testing the macrophage effector molecule Arg-1. Arg-1 was highly expressed in the simulated tumor microenvironment group. To develop “precision medicine” in bladder cancer therapy, bladder cancer cells were treated with different clinical ‘neo-adjuvant’ chemotherapy schemes in this system, and their sensitivity differences were fully reflected. This work provides a preliminary foundation for neo-adjuvant chemotherapy in bladder cancer, a theoretical foundation for tumor microenvironment simulation and promotes individual therapy in bladder cancer patients.
Stromal fibroblasts are essential for tumor proliferation and invasion. Here we presented a 3-dimensional (3D) microfluidic co-culture device to reconstruct an in vivo-like tumor microenvironment for investigation of the interactions of cancer-associated fibroblasts (CAFs) and bladder cancer cells. With this device, we verified that the cytokines secreted by bladder cancer cells T24 effectively transform the fibroblasts into CAFs. Compared to fibroblasts, the CAFs, which undergo the aerobic glycolysis, showed higher ability to produce lactate and provide energy for bladder cancer cell proliferation and invasion. We also demonstrated that this kind of tumor-promoting effect was associated with the upregulation of monocarboxylate anion transporter 1 (MCT1) and MCT4 expression in CAFs. We concluded that MCT1 and MCT4 are involved in bladder cancer cell proliferation and invasiveness. Moreover, this 3D microfluidic co-culture device allows for the assay to characterize various cellular events in a single device sequentially, facilitating a better understanding of the interactions among heterotypic cells in a sophisticated microenvironment.
Aim:There is little knowledge about the expression profile and function of circular RNAs (circRNAs) in prostate cancer (PCa).Methods:The expression profiles of circRNAs in RWPE-1, 22RV1 and PC3 cells were explored via high-throughput circRNAs sequencing and validated by real-time qPCR. The roles of differentially expressed circRNAs were evaluated by bioinformatics analyses.Results:Altogether 9545 circRNAs were identified and hundreds of differentially expressed circRNAs were recognized. CircRNA–miRNA networks analysis showed that many circRNAs, including circSLC7A6, circGUCY1A2 and circZFP57 could cross-talk with tumor-related miRNAs such as miR-21, miR-143 and miR-200 family.Conclusion:The results of our bioinformatics analyses suggested that circRNAs should play critical roles in the development and progression of PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.