As a result of the influence of geographical environment and historical heritage, food preference has significant regional differentiation characteristics. However, the spatial structure of food culture represented by the cuisine culture at the regional level has not yet been explored from the perspective of geography. Cultural regionalization is an important way to analyze and understand the spatial structure of food culture. It is of great significance to deeply mine intra-regional homogeneity and scientifically cognize inter-regional cultural characteristics. This study aims to explore such patterns by focusing on the restaurants of the eight most famous cuisines in Mainland China. Initially, the density based geospatial hotspot detector method is proposed to analyze and mapping the spatial quantitative characteristics of the eight major cuisines. A heuristic method for geographical regionalization based on machine learning was used to analyze spatial distribution patterns in accordance with the proportion of these cuisines in each prefecture-level city. Results show that some types of single-category cuisines have a stronger spatial concentration effect in the present, whereas others have a strong diffusion trend. In the comprehensive analysis of multicategory cuisines, the eight major cuisines formed a new structure of geographical regionalization of Chinese cuisine culture. This study is helpful to understand regional structure characteristics of food preference, and the density-based hotspot detector proposed in this paper can also be used in the analysis of other type of point of interest (POI) data.
A number of algorithms exist in measuring clothing similarity for clothing recommendations in E-commerce. The clothing similarity mostly depends on its shape, texture and style. In this paper we introduce three models of defining feature space for clothing recommendations. The sketch-based image search mainly focuses on defining similarity of clothing in contour dimension. The spatial bagof-feature approach is employed to measure the clothing similarity of local image patterns. Finally, we introduce a query adaptive shape model which combines shape characteristics and labels of clothing, in order to take the semantic information of clothing. A large number of simulations are given to show the feasibility and performance of the clothing recommendations by using content-based image search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.