Under investigation is the (2[Formula: see text]+[Formula: see text]1)-dimensional KMN equation, which is a new extension of the well-known nonlinear Schrödinger equation. Firstly, we investigate the modulational instability (MI) of the plane wave states for this equation. Secondly, we explore several types of interesting mixed breather–lump solutions in orders [Formula: see text] and [Formula: see text] cases by using the generalized [Formula: see text]-fold Darboux transformation (DT). Moreover, we also provide the graphical analysis of such mixed interaction solutions to better understand their dynamical behavior. Finally, we sum up a few mathematical features to obtain special mixed interaction structures through the generalized [Formula: see text]-fold DT. The results obtained in this paper might excite the interest in nonlinear optics and relevant fields.
It is an important research topic to study diverse local wave interaction phenomena in nonlinear evolution equations, especially for the semi-discrete nonlinear lattice equations, there is little work on their diverse local wave interaction solutions due to the complexity and difficulty of research. In this paper, a semi-discrete higher-order Ablowitz-Ladik equation is investigated via the generalized <inline-formula><tex-math id="M2">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M2.png"/></alternatives></inline-formula>-fold Darboux transformation. With the aid of symbolic computation, diverse types of localized wave solutions are obtained starting from constant and plane wave seed background. Particularly, for the case <inline-formula><tex-math id="M3">\begin{document}$M=N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M3.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M4">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M4.png"/></alternatives></inline-formula>-fold Darboux transformation may reduce to the <i>N</i>-fold Darboux transformation which can be used to derive multi-soliton solutions from constant seed background and breather solutions from plane wave seed background, respectively. For the case <inline-formula><tex-math id="M5">\begin{document}$M=1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M5.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M6">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M6.png"/></alternatives></inline-formula>-fold Darboux transformation reduce to the generalized <inline-formula><tex-math id="M7">\begin{document}$(1, N-1)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M7.png"/></alternatives></inline-formula>-fold one which can be used to obtain rogue wave solutions from plane wave seed background. For the case <inline-formula><tex-math id="M8">\begin{document}$M=2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M8.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M9">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M9.png"/></alternatives></inline-formula>-fold Darboux transformation reduce to the generalized <inline-formula><tex-math id="M10">\begin{document}$(2, N-2)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M10.png"/></alternatives></inline-formula>-fold one which can be used to give mixed interaction solutions of one-breather and first-order rogue wave from plane wave seed background. To study the propagation characteristics of such localized waves, the numerical simulations are used to explore the dynamical stability of such obtained solutions. Results obtained in the present work may be used to explain related physical phenomena in nonlinear optics and relevant fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.