Most chemotherapeutics elevate intracellular levels of reactive oxygen species (ROS), and many can alter redox-homeostasis of cancer cells. It is widely accepted that the anticancer effect of these chemotherapeutics is due to the induction of oxidative stress and ROS-mediated cell injury in cancer. However, various new therapeutic approaches targeting intracellular ROS levels have yielded mixed results. Since it is impossible to quantitatively detect dynamic ROS levels in tumors during and after chemotherapy in clinical settings, it is of increasing interest to apply mathematical modeling techniques to predict ROS levels for understanding complex tumor biology during chemotherapy. This review outlines the current understanding of the role of ROS in cancer cells during carcinogenesis and during chemotherapy, provides a critical analysis of the methods used for quantitative ROS detection and discusses the application of mathematical modeling in predicting treatment responses. Finally, we provide insights on and perspectives for future development of effective therapeutic ROS-inducing anticancer agents or antioxidants for cancer treatment.
β‐In2S3 is a natural defective III–VI semiconductor attracting considerable interests but lack of efficient method for its 2D form fabrication. Here, for the first time, this paper reports controlled synthesis of ultrathin 2D β‐In2S3 flakes via a facile space‐confined chemical vapor deposition method. The natural defects in β‐In2S3 crystals, clearly revealed by optical spectra and optoelectronic measurement, strongly modulate the (opto)‐electronic of as‐fabricated β‐In2S3 and render it a broad detection range from visible to near‐infrared. Particularly, the as‐fabricated β‐In2S3 photodetector shows a high photoresponsivity of 137 A W−1, a high external quantum efficiency of 3.78 × 104%, and a detectivity of 4.74 × 1010 Jones, accompanied with a fast rise and decay time of 6 and 8 ms, respectively. In addition, an interesting linear response to the testing power intensities range is observed, which can also be understood by the presence of natural defects. The unique defective structure and intrinsic optical properties of β‐In2S3, together with its controllable growth, endow it with great potential for future applications in electronics and optoelectronics.
Indocyanine green (ICG) is a near-infrared dye that has been used in the clinic for retinal angiography, and defining cardiovascular and liver function for over 50 years. Recently, there has been an increasing interest in the incorporation of ICG into nanoparticles (NPs) for cancer theranostic applications. Various types of ICG-incorporated NPs have been developed and strategically functionalised to embrace multiple imaging and therapeutic techniques for cancer diagnosis and treatment. This review systematically summaries the biodistribution of various types of ICG-incorporated NPs for the first time, and discusses the principles, opportunities, limitations, and application of ICG-incorporated NPs for cancer theranostics. We believe that ICG-incorporated NPs would be a promising multifunctional theranostic platform in oncology and facilitate significant advancements in this research-active area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.