The long-wave infrared (LWIR) quantum-well photodetector (QWIP) operates at low temperatures, but is prone to focal plane temperature changes when imaging in complex thermal environments. This causes dark current changes and generates low-frequency temporal dark current noise. To address this, a dark current noise correction method based on dark pixels is proposed. First, dark pixels were constructed in a QWIP system and the response components of imaging pixels and dark pixels were analyzed. Next, the feature data of dark pixels and imaging pixels were collected and preprocessed, after which a recurrent neural network (RNN) was used to fit the dark current response model. Target data were collected and input into the dark current response model to obtain dark level correction values and correct the original data. Finally, after calculation and correction, temporal noise was reduced by 49.02% on average. The proposed method uses the characteristics of dark pixels to reduce dark current temporal noise, which is difficult using conventional radiation calibrations; this is helpful in promoting the application of QWIPs in LWIR remote sensing.
The performance of long-wave infrared (LWIR) quantum well (QWIP) detection systems is seriously affected by the dark current of the detectors. Tiny variations in the focal-plane temperature of the devices cause fluctuations in the dark current, which in turn generate temporal noise. It is difficult to measure the dark current accurately after the detector assembly is packaged. To address the above problems, a QWIP dark current measurement method based on focal-plane temperature is proposed, as well as a method to reduce dark current noise. First, the response model of the LWIR QWIP detection system was established, and the dark current model was introduced. Then, the detection system components were introduced, chiller calibration experiments were carried out, and the dark current values of the QWIP at different temperatures were measured by combining the system design and parameters. Next, the dark current noise correction method was proposed, the target data were collected, and experiments were carried out to correct them. Finally, after the calculation, the temporal noise was reduced by 57.69% after the correction, which is proof of a significant effect. This method can obtain the real-time dark current value by collecting the focal-plane temperature data, and reduce the dark current temporal noise (difficult to eliminate using conventional methods), which is beneficial for promoting the application of QWIPs in LWIR remote sensing detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.