Increasing attention on microwave ultra-broadband metamaterial absorbers has been paid due to their promising applications. While most microwave ultra-broadband metamaterial absorbers developed so far are based on metallic resonant structures, dispersive dielectric water-based metamaterial opens a simpler and more versatile route for the construction of polarization- and angle- insensitive ultra-broadband absorption. Here, we review the recent progress of water-based metamaterial absorbers by providing an illustration of the mechanisms to realize ultra-broadband, tunable and multi-functional absorption. We also address the further development direction and some potential novel applications.
Robust, conductive and stable Ti3+ self-doped dark TiO2 nanoparticles (Ti4O7) called Magnéli phases are attractive in electromagnetic (EM) applications due to their tunable dielectric properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.