Diesel-electric hybrid propulsion system (HPS) is widely applied for shunting locomotive due to the characteristics of flexible configuration, economic and environmental protection in the world. Energy management strategy (EMS) is an important design factor of HPS that can optimize the energy distribution of each power sources, improve system efficiency, and reduce fuel consumption. In this paper, the model of HPS for shunting locomotive and system operating profile are firstly carried out. Then the EMS consist of the conventional rule-based (RB) strategy rule, and a fuzzy neural network base on dynamic programming (FNN-DP) strategy are studied. Finally, the simulations were carried out with these EMSs in the system model at full operating conditions to derive the fuel consumption. The conclusion is that the theoretical optimal solution of DP provides reference and guidance for the fuzzy neural network strategy to improve the rules, and the fuel consumption of the FNN-DP strategy is 10.2% lower than the conventional RB strategy.
Configuration parameters of vehicular hybrid power systems (HPSs) are critical to their economy, weight, and fuel consumption. Many marine vehicles have parameters often set based on engineering experience when designing them, which often leads to excess power from power sources, increased costs, and increased emissions. In this paper, a multi-objective optimization model, which includes the economic cost, weight, and fuel consumption, is proposed to evaluate the performance of configuration parameters. To optimize the objective optimization model, this paper adopts a genetic algorithm (GA) method to iteratively calculate the globally optimal configuration parameter results. Finally, three sets of different weight coefficients are used to verify the configuration optimization results when considering different optimization objectives. To verify the advantage of the multi-objective optimization method, the three sets of optimized results are compared to a specific configuration parameter of a marine vehicle. From the simulation results, compared with the original configuration scheme, the total economic cost of Scheme 1 is reduced by 37.25 × 104 $, the total weight is reduced by 213.55 kg, and the total fuel consumption is reduced by 163.64 t; the total economic cost of Scheme 2 is reduced by 12.2 × 104 $, the total weight is increased by 393.36 kg, and the total fuel consumption is reduced by 271.89 t; the total economic cost of Scheme 3 is reduced by 36.89 × 104 $, the total weight is reduced by 209.2 kg, and the total fuel consumption is reduced by 162.35 t.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.