W is a widely used refractory metal with ultra-high melting point up to 3410 °C. However, its applications are limited by poor ablation resistance under high-temperature flame and air flow, which is crucial for aerospace vehicles. To improve the ablation resistance of W under extreme conditions, W-Y alloys doped with different Hf mass fractions (0, 10, 20, and 30) were prepared using the fast hot pressing sintering method. Microstructure and ablation behaviours at 2000 °C were investigated. Results showed that adding an appropriate amount of Hf improved the properties of the W-Y alloy evidently. In particular, the hardness of the alloy increased with the increased content of Hf. The formation of the HfO2 layer on the surface during ablation decreased the mass and linear ablation rates, indicating enhanced ablation resistance. However, excessive Hf addition will result in crack behaviour during ablation. With a Hf content of 20 wt.%, the alloy exhibited high stability and an excellent ablation resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.