Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria
BackgroundAntibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative.MethodT4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced.FindingsNo adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes.InterpretationOral coliphages showed a safe gut transit in children, but failed to achieve intestinal amplification and to improve diarrhea outcome, possibly due to insufficient phage coverage and too low E. coli pathogen titers requiring higher oral phage doses. More knowledge is needed on in vivo phage–bacterium interaction and the role of E. coli in childhood diarrhea for successful PT.FundingThe study was supported by a grant from . The trial was registered with Identifier NCT00937274 at ClinicalTrials.gov.
Nearly 100 years ago, Felix d'Herelle, the codiscoverer of bacteriophages, used bacteria to control insect pests and used phages against bacterial disease. His approaches reflected ecological insights before this branch of biology became an established scientific discipline. In fact, one might have predicted that phage research would become the springboard for biotechnology and ecology. However, d'Herelle was ahead of his time, and the zeitgeist in the 1930s pushed physicists into the question "What is life?" Phages as the simplest biological systems were the logical choice for this question, and phage research became the cradle of molecular biology. Now many researchers speak of a "new age of phage research." It is now realized that phages play an important role in ecology (e.g., phage impact on the cycling of organic matter in the biosphere at a global level) (27), that phages influence the evolution of bacterial genomes (most obviously in the development of bacterial pathogenicity) (7), and that phages might provide potential tools to face the antibiotic resistance crisis in medicine (59). With this new trend, we now see a clear shift from the reductionist approach, focusing on a handful of phages in carefully controlled laboratory conditions, towards the study of many different phages in the complexity of real-life situations.In contrast to the molecular biology-oriented phage research where the interaction of molecules took center stage, ecology focuses on the interactions between organisms and their physical environment. Much of ecology is therefore about the evolution of biological diversity in space and time. In contrast to many branches of biology, ecology attributes a great importance to quantitative relationships and numbers and aims at a mathematical formulation of its observations. It is thus appropriate to start this review with an overview of phage titers encountered in the biosphere. Next, we ask how a parasite targets its host if the latter is scarce or not in an appropriate physiological state. Finally, we report on research that tries to bridge phage ecology and genomics and cell biology approaches. It is concluded that the integration of phages into complex networks of interacting biological systems, and analysis by molecular techniques, could give phage research a model character in biology again.
Fifteen healthy adult volunteers received in their drinking water a lower Escherichia coli phage T4 dose (10 3 PFU/ml), a higher phage dose (10 5 PFU/ml), and placebo. Fecal coliphage was detected in a dose-dependent way in volunteers orally exposed to phage. All volunteers receiving the higher phage dose showed fecal phage 1 day after exposure; this prevalence was only 50% in subjects receiving the lower phage dose. No fecal phage was detectable a week after a 2-day course of oral phage application. Oral phage application did not cause a decrease in total fecal E. coli counts. In addition, no substantial phage T4 replication on the commensal E. coli population was observed. No adverse events related to phage application were reported. Serum transaminase levels remained in the normal range, and neither T4 phage nor T4-specific antibodies were observed in the serum of the subjects at the end of the study. This is, to our knowledge, the first safety test in the recent English literature which has measured the bioavailability of oral phage in humans and is thus a first step to the rational evaluation of phage therapy for diarrheal diseases.Antibiotic treatment of Escherichia coli diarrhea is frequently problematic, which raises interest in alternative approaches. Felix d'Hérelle, the codiscoverer of phages, advocated the idea of exploiting the lytic effect of phages on bacteria for therapeutic purposes. Phage therapy has a colorful history but became a common therapy for intestinal and skin infections only in the Soviet Union (17). Currently, we see a renewed interest in phage therapy (13). The present study describes the oral administration of phages to human volunteers and the subsequent clinical and microbiological analyses. This safety test is a follow-on from ecology studies of T4-like phages isolated from the stools of pediatric diarrhea patients (7), the analysis of their genomes (6), and their behavior in experimental animals (8). MATERIALS AND METHODS Subjects.Fifteen healthy adult volunteers between 23 and 54 years of age (six women and nine men) were recruited from the personnel at the Nestlé Research Center. Their heights ranged from 150 to 187 cm, and their weights ranged from 56 to 85 kg (body mass index range, 21.4 to 32.1 kg/m 2 ). All subjects were Caucasians. Exclusion criteria for enrollment were immunosuppression, gastric problems, raised serum transaminase levels, antibiotic treatment during the preceding 4 weeks, laxative use, pregnancy, and participation in other trials. The protocol was approved by the local ethical committee, and the participants provided written consent.Study design. The study was designed as a single-center, randomized, and placebo-controlled study. The trial was a double-blinded, three-period crossover comparison of two dosages of oral T4 phage conducted in June 2003 at our research center. Each subject received a higher phage dose (dose A, with 10 5 PFU/ml), a lower phage dose (dose B, with 10 3 PFU/ml), and placebo (dose C). The subjects were randomly assigned to one o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.