In a steady state bench scale fluidized bed the decomposition reaction of NaHCO, was carried out. The residence times distributions, DRT, of carbon dioxide (the gaseous product) and non adsorbing argon (the reference tracer) were mass spectroscopically measured as a function of the bed temperature. By means of single-, two-and three-phase dispersion models as well as by a cell model, the DRT's were evaluated on line by a computer.The steady state transverse and longitudinal concentration profiles of these tracers upstream from the plane source were also measured and evaluated by a dispersion model as well as by a counter current back mixing model. Comparison of the steady state and nonsteady state dispersion coefficient measurements indicate that the longitudinal gas mixing is only partially due to backmixing. The experimentally determined wake fractions agree well with those published in the literature. Since the adsorption rate of CO, on the pore surface area of the particles in the dense phase is high no interphase transfer from the interstitial gas of the dense phase into the bubble phase takes place.The desorption of CO, and its return into the interstitial gas and than into the gas phase occurs only slowly and with an initial time lag. The on-line DRT can be used as a diagnostical technique for investigation of the reactor during its operation, if operation disturbances or breakdowns occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.