The paper describes the Rosetta Lander named Philae and introduces its complement of scientific instruments. Philae was launched aboard the European Space Agency Rosetta spacecraft on 02 March 2004 and is expected to land and operate on the nucleus of 67P/Churyumov-Gerasimenko at a distance of about 3 AU from the Sun. Its overall mass is ∼98 kg (plus the support systems remaining on the Orbiter), including its scientific payload of ∼27 kg. It will operate autonomously, using the Rosetta Orbiter as a communication relay to Earth. The scientific goals of its experiments focus on elemental, isotopic, molecular and mineralogical composition of the cometary material, the characterization of physical properties of the surface and subsurface material, the large-scale structure and the magnetic and plasma environment of the nucleus. In particular, surface and sub-surface samples will be acquired and sequentially analyzed by a suite of instruments. Measurements will be performed primarily during descent and along the first five days following touch-down. Philae is designed to also operate on a long time-scale, to monitor the evolution of the nucleus properties. Philae is a very integrated project at system, science and management levels, provided by an international consortium. The Philae experiments have the potential of providing unique scientific outcomes, complementing by in situ ground truth the Rosetta Orbiter investigations.
This paper is devoted to the investigation of the dynamics of the plasma jet, which is produced by a subsonic DC spray torch operated with an argon-helium mixture as the plasma gas. It focuses on studying the effect of some parameters which influence the arc attachment inside the anode nozzle. For this purpose, the paper uses different means of gas injection, that is straight flow injection and vortex flow injection, and anodes which have experienced different degree of wear. A heavily eroded anode is characterized by large voltage fluctuations at relatively low frequencies, while straight gas injection at high current levels led to a low average voltage with small fluctuations and to low burner performance. The results are interpreted by assuming changes in the thickness of the cold interface between the arc and the anode, and conclusions are drawn as to the voltage characteristics indicative of good torch operation. Paper includes a German-language abstract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.