Bioglass(®)-based scaffolds for bone tissue engineering have been developed, which can also serve as carriers for drug delivery. For this, P(3HB) microspheres (PMSs) loaded with tetracycline were fabricated and immobilised on the scaffold surfaces by a modified slurry dipping technique. The sustained drug delivery ability in simulated body fluid was confirmed by using UV-Vis absorption spectroscopy measurements. The MTT assay using mouse fibroblast cells provided evidence that the tetracycline loaded microspheres produced in this study show limited cytotoxicity. The scaffolds developed in this work provide mechanical support, adequate 3D surface roughness, bioactivity and controlled drug delivery function, and are thus interesting candidates for bone tissue engineering applications.
Muscarinic receptor agonists are characterized by apparently strict restraints on their tertiary or quaternary amine and their distance to an ester or related center. On the basis of the active state crystal structure of the muscarinic M2 receptor in complex with iperoxo, we explored potential agonists that lacked the highly conserved functionalities of previously known ligands. Using structure-guided pharmacophore design followed by docking, we found two agonists (compounds 3 and 17), out of 19 docked and synthesized compounds, that fit the receptor well and were predicted to form a hydrogen-bond conserved among known agonists. Structural optimization led to compound 28, which was 4-fold more potent than its parent 3. Fortified by the discovery of this new scaffold, we sought a broader range of chemotypes by docking 2.2 million fragments, which revealed another three micromolar agonists unrelated either to 28 or known muscarinics. Even pockets as tightly defined and as deeply studied as that of the muscarinic reveal opportunities for the structure-based design and the discovery of new chemotypes.
The aim of this study is to develop and optimise a method of sugar content determination in food products. Date juice (syrup) was used as a sample natural food resource for the analysis because of its potential usage as an alternative substrate for a variety of fermentation processes. Hence, qualifying and quantifying its sugar content is a crucial step. Therefore, gas chromatography mass spectrometry (GCMS) was used as a pre-qualitative method to identify the types of sugar in the date sample. The results demonstrate that the analysed date juice contains glucose, fructose and sucrose. This analysis was obtained by measuring the retention time of individual standard sugar samples such as glucose, fructose, mannose and sucrose. In addition, the mass spectra of the standard and date juice samples contained characteristic fragments of glucose, fructose and sucrose. Thus, GCMS results determined the appropriate enzymatic assays for quantifying the sugars in date juice. These results were similar to those of the two enzymatic methods (standard enzymatic assay and measuring the change in pH by CL10 analyser). Therefore, they confirmed the identified sugars and provided the sugar contents of the sample. Consequently, sugar quantification results indicate that 1 g of date juice sample contains a total of 0.5275–0.5507 g of six-carbon sugars (glucose + fructose) and 0.064–0.068 g of sucrose. As a consequence, the total sugar content in 1 g of date juice is 0.600–0.615 g. These results are comparable to the sample analysis that is provided by the date juice production company.
The use of fibrin in tissue engineering has greatly increased over the last 10 years. The aim of this research was to develop a mathematical model to relate the microcapsule-size and cell-load to growth and oxygen depletion. Keratinocytes were isolated from rat skins and microencapsulated dropping fibrinogen and thrombin solutions. The cell growth was measured with MTT-assay and confirmed using histochemical technique. The oxygen was evaluated using a Clark sensor. It was found that Fick-Monod model explained the cell growth for the first 48 h, but overestimated the same thereafter. It was necessary to add a logistic equation to reach valid results. In relation to the preferred implant alternative, when considering large initial cell loads, the possibility to implant small loads of fast-growing cells arises from the simulations. In relation to the microcapsule size, it was found that a critical diameter could be established from which cell growth velocity is about the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.