Regarding the outdoor behavior of the Caucasian population, modern sunscreens should provide high and broad-spectrum ultraviolet protection in the ultraviolet B as well as in the ultraviolet A range and should be photochemically stable for ultraviolet doses, which can be expected in solar radiation. At present an assessment of the photostability of suncare products is not a general requirement before marketing. In order to evaluate the photostability of suncare products we conducted an in vitro test and measured the spectral absorbance of 16 sunscreens before, and after exposure to increasing biologically weighted standard erythema doses (5, 12.5, 25, 50) of solar-simulated radiation. Seven of 16 suncare products showed a significant dose- and wavelength-dependent decrease of the ultraviolet A protective capacity, whereas the ability to absorb ultraviolet B was not affected. In the ultraviolet A range, the decrease of absorbance (photoinactivation), respectively, the increase of transmission was 12-48% for an ultraviolet exposure of 25 standard erythema dose. Photoinactivation started in the wavelength range between 320 and 335 nm with a maximum above 350 nm. Furthermore, our analysis showed that the behavior of suncare products was not predictable from its individual ingredients. Neither complex combinations of organic filters nor addition of inorganic filters could absolutely prevent photoinactivation. The inclusion of a single photounstable filter did not mean photoinstability of the complete suncare product. Photoinactivation of sunscreens appears to be an underestimated hazard to the skin, first, by formation of free radicals, second, by increased ultraviolet A transmission.
Optoelectronic personal UV-meters were used to monitor the occupational facial solar erythemally effective exposure of 12 Austrian full-time farmers with high temporal resolution. To ensure high quality measurements several quality assurance procedures were applied, like calibration with respect to solar elevation and total ozone column. From April to October the test persons carried the UV-meters on the forehead during working hours. A digital diary (activity, location, weather, photoprotective measures) was completed on an hourly basis. Our field test produced 1427 complete daily records (measurement and diary). The total exposures showed high variability (77-757 standard erythema dose [SED]) which correlates with the number of working days and even stronger with the little numbers of days with high exposure (>10 SED). Risk factors for high exposures were: mixed-culture farms with aggravated working conditions, low degree of automation of working processes, inadequate operating logistics (summarized as manual work outdoor), driving machines without cabins, and female gender. UV exposure of female farmers was approximately twice as high as that of men: Women received 15% of ambient radiation while men got 8%. Avoiding daily exposure >10 SED could reduce exposure down to 40% and the risk in developing skin cancer by a factor of 40.
Within this study, the erythemal ultraviolet (UV) exposure received by different parts of the body during four different activities is determined. Optoelectronic devices were used to measure the erythemal UV exposure at 10 different positions of the body. The measuring devices were fixed on the forehead, on the shoulders, on the arms, on the chest, on the thighs and on the lower legs. The measurements were performed during the following activities of the test persons: walking, sitting, lying and sitting up. The measurements were performed on four clear sky days in the early afternoon at 1 s interval. One measurement sequence was taking 30-40 min. For the analysis of the measured UV exposures, the ambient UV is taken as a reference to remove the atmospheric fluctuations on the measured UV exposure. The strong dependence of the UV exposure on the activity and on the orientation of the test person is shown. Most of the body parts receive the highest exposure, when the test subject is sitting up or lying. The shoulders are most at risk when the test person is walking, whereas during the activities sitting up and lying the legs are most at risk.
Out of 27 lipsticks only 13 products showed a photostable performance (DeltaTA < 5% and DeltaTB < 5% for 12.5 SED). We propose therefore that only products, which fulfil these UV photostability criteria should be marketed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.