Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of pathogenic Escherichia coli, especially serotype O157:H7. We investigated the UV (253.7 nm) inactivation behavior and the capability of dark repair (liquid-holding recovery) and photoreactivation of seven pathogenic (including three enterohemorrhagic E. coli) strains and one nonpathogenic strain of E. coli (ATCC 11229) with respect to the use of UV light for water disinfection purposes. Because most bacteria and yeast are known to be able to repair UV damage in their nucleic acids, repair mechanisms have to be considered to ensure safe water disinfection. We found a wide divergence in the UV susceptibility within the strains tested. A 6-log reduction of bacteria that fulfills the requirement for safe water disinfection was reached for the very most susceptible strain O157:H7 (CCUG 29199) at a UV fluence of 12 J/m2, whereas for the most resistant strain, O25:K98:NM, a UV fluence of about 125 J/m2 was needed. Except for one strain (O50:H7) liquid-holding recovery did not play an important role in recovery after UV irradiation. By contrast, all strains, particularly strains O25:K98:NM, O78:K80:H12, and O157:H7 (CCUG 29193), demonstrated photorepair ability. For a 6-log reduction of these strains, a UV fluence (253.7 nm) up to 300 J/m2 is required. The results reveal that the minimum fluence of 400 J/m2 demanded in the Austrian standard for water disinfection is sufficient to inactivate pathogenic E. coli. A fluence of 160 J/m2 (recommendation in Norway) or 250 J/m2 (recommendation in Switzerland) cannot be regarded as safe in that respect.
The microbicidal effect of UV light depends on the dose in both, disinfection processes and natural inactivation by the sunlight in surface water. Deviations of the time dose reciprocity are well known from chemical water disinfection whereas no data are available about this effect in UV inactivation in water. In a previous study we found that the UV inactivation behaviour of yeast strains does not follow the time dose reciprocity, insofar that longer exposure led to higher reduction of cultivable cells. In contrast, an earlier study about E coli B/r claimed a higher inactivation with single exposure compared with fractionated UV irradiation. To investigate this question we selected water-relevant microorganisms and studied their UV inactivation behaviour (253.7nm) by means of a specially designed UV irradiation apparatus (a) under standard irradiation conditions (2W/m2) and (b) with three levels of UV dose rate (2, 0.2 and 0.02W/m2). The test organisms were (i) three E coli strains (ATCC 25922, ATCC 11229 and an isolate from sewage) representing the routinely used faecal indicator, (ii) three bacterial viruses (MS2, ϕX174 and B40-8) proposed as indicators for viral contamination in water and (iii) spores of Bacillus subtilis because of their use as a biodosimeter in prototype testing of commercial UV plants for drinking water disinfection. We found, under standard inactivation conditions, that the E coli strains and phage ϕX174 are most UV susceptible, followed by B40-8 and finally MS2 and bacterial spores. The dose protraction experiments revealed for the E coli strains a higher inactivation with high dose rates compared to low dose rates at the same UV doses (difference of about 1 log10 at 80-100J/m2). The other test organisms did not deviate from the time dose reciprocity in the proven range of dose.
Noroviruses (previously Norwalk-like viruses) are the most common viral agents associated with food-and waterborne outbreaks of gastroenteritis. In the absence of culture methods for noroviruses, animal caliciviruses were used as model viruses to study inactivation by nonionizing (253.7-nm-wavelength [UV]) and ionizing (gamma) radiation. Here, we studied the respiratory feline calicivirus (FeCV) and the presumed enteric canine calicivirus (CaCV) and compared them with the well-studied bacteriophage MS2. When UV irradiation was used, a 3-log 10 reduction was observed at a fluence of 120 J/m 2 in the FeCV suspension and at a fluence of 200 J/m 2 for CaCV; for the more resistant phage MS2 there was a 3-log 10 reduction at a fluence of 650 J/m 2 . Few or no differences were observed between levels of UV inactivation in high-and low-proteincontent virus stocks. In contrast, ionizing radiation could readily inactivate MS2 in water, and there was a 3-log 10 reduction at a dose of 100 Gy, although this did not occur when the phage was diluted in high-proteincontent stocks of CaCV or FeCV. The low-protein-content stocks showed 3-log 10 reductions at a dose of 500 Gy for FeCV and at a dose of 300 for CaCV. The inactivation rates for both caliciviruses with ionizing and nonionizing radiation were comparable but different from the inactivation rates for MS2. Although most FeCV and CaCV characteristics, such as overall particle and genome size and structure, are similar, the capsid sequences differ significantly, making it difficult to predict human norovirus inactivation. Adequate management of UV and gamma radiation processes for virus inactivation should limit public health risks.Human caliciviruses are the most important enteric agents of gastroenteritis in industrialized countries (13,17). Many waterborne outbreaks associated with noroviruses have been reported (1,3,5,10,15). Usually, epidemiological data prove that water was the common source for the outbreak, and in some molecular tracing studies norovirus strains were successfully identified in the source water and identical sequences were found in stools from patients (4,8,11,12,16). Virus concentrations in source water may peak with sewage overflow due to heavy rainfall or leaking septic tanks or pipes (2, 20). Breakdown or malfunctioning of water treatment plants may lead to insufficient reductions in virus concentrations in drinking water (20). Moreover, European legislation is mainly based on bacteriological quality parameters that determine fecal contamination of food and water. Viruses, however, are more resistant to treatment (9), are generally harder to detect, and exhibit lower dose-response relationships than bacteria. Therefore, water may meet microbiological safety guidelines but still pose a considerable health hazard.Irradiation treatment is being used more frequently for disinfection of food and water. Bacteriophages have been used as indicators for inactivation of viruses by ionizing and nonionizing radiation since bacteria are generally less resista...
The microbicidal UV fluence under polychromatic radiation from UV lamps is typically measured using the DNA absorbance spectrum as a weighting factor for the relative wavelength effectiveness. However, this DNA-based weighting does not necessarily match the spectral sensitivity of the microorganism being tested. Bacillus subtilis spores are often used for UV reactor validation in Europe, while MS2 coliphage is typically used for validation testing in the United States. These organisms were exposed to quasi-monochromatic UV irradiation across the microbicidal spectrum at wavelengths of 214, 230, 240, 254, 265, 280, and 293 nm. MS2 was three times more sensitive to wavelengths near 214 nm compared to the 254 nm output of low-pressure lamps, while B. subtilis spores were most sensitive to wavelengths around 265 nm. Use of these action spectra, compared to the DNA-based weighting, resulted in differences in the calculated polychromatic UV fluence. Consequently, the action spectrum, which is specific for each microorganism, has implications on the uncertainty of UV fluence determination during validation of reactors with polychromatic UV lamps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.