Thinning in a white spruce, Piceaglanca (Moench) Voss, forest in interior Alaska stimulated organic matter decomposition in the forest floor as indicated by weight loss of litter and cellulose bags. The general higher weight loss in the most heavily thinned plot is attributed to observed higher average seasonal temperatures. Cellulose bags placed in the boundary between the fermentation–humus and the humus–mineral soil layers of the forest floor showed a significantly higher weight loss than those placed on top of the litter layer. This was attributed to more favorable moisture conditions and a more direct contact with the decomposing microbial populations in the fermentation–humus and humus–mineral soil layers.Regardless of thinning treatment, elements were grouped according to their rate of release from decomposing organic matter as follows: K > Mg > C ≈ P ≈ N ≈ Ca, where potassium is lease resistant. Since relatively small differences in weight loss of litter bags were observed between the treatments, similar studies should extend over a longer period in order to obtain a better understanding of the decomposition processes.
Trees defoliated by the spruce budworm (Choristoneurafumiferana (Clem.)) for 1 to 4 years and subsequently protected rapidly regained foliar biomass. Three plots of 25- to 30-year-old balsam fir (Abiesbalsamga (L.) Mill.) trees, on the Cape Breton Highlands of Nova Scotia, were studied. Two major factors contributed to the rapid growth recovery rates: the ability to produce epicormic shoots, combined with increased retention of older age-classes of needles, and the development of new foliage at the expense of volume growth. A complete recovery of volume increment occurred after 2 years of extreme defoliation, but not after 4 years of severe defoliation. Epicormic shoot production was only associated with shoot and bud destruction and therefore, growth recovery was slow after partial defoliation of only current foliage. In all plots studied, there was a lag of 2 to 3 years between increased foliar biomass and significant increases in volume increment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.