Advanced driving simulators aim at rendering the motion of a vehicle with maximum fidelity, which requires increased mechanical travel, size, and cost of the system. Motion cueing algorithms reduce the motion envelope by taking advantage of limitations in human motion perception, and the most commonly employed method is just to scale down the physical motion. However, little is known on the effects of motion scaling on motion perception and on actual driving performance. This paper presents the results of a European collaborative project, which explored different motion scale factors in a slalom driving task. Three state-of-the-art simulator systems were used, which were capable of generating displacements of several meters. The results of four comparable driving experiments, which were obtained with a total of 65 participants, indicate a preference for motion scale factors below 1, within a wide range of acceptable values (0.4-0.75). Very reduced or absent motion cues significantly degrade driving performance. Applications of this research are discussed for the design of motion systems and cueing algorithms for driving simulation.
This paper introduces the CableRobot simulator, which was developed at the Max Planck Institute for Biological Cybernetics in cooperation with the Fraunhofer Institute for Manufacturing Engineering and Automation IPA. The simulator is a completely novel approach to the design of motion simulation platforms in so far as it uses cables and winches for actuation instead of rigid links known from hexapod simulators. This approach allows to reduce the actuated mass, scale up the workspace significantly, and provides great flexibility to switch between system configurations in which the robot can be operated. The simulator will be used for studies in the field of human perception research and virtual reality applications. The paper discusses some of the issues arising from the usage of cables and provides a system overview regarding kinematics and system dynamics as well as giving a brief introduction into possible application use cases
This paper discusses the technical issues that were required to adapt a KUKA Robocoaster for use as a real-time motion simulator. Within this context, the paper addresses the physical modifications and the software control structure that were needed to have a flexible and safe experimental setup. It also addresses the delays and transfer function of the system. The paper is divided into two sections.The
We were interested in the question of how cones contribute to the detection of brightness, red-green, and blue-yellow. The linear combination of cone signals contributing to flicker detection was determined by fitting a plane to 64 points (colors) of equal heterochromatic flicker brightness. A small S-cone contribution to flicker brightness of similar amplitude in all five subjects was identified. The ratio of L- to M-cone contribution was found to vary considerably among subjects (1.7-4.1). Chromatic detection thresholds were determined for small patches in the isoluminant plane defined by flicker brightness. These stimuli were presented at an eccentricity of 40 arc min. By using color naming at the detection threshold, one can attribute different segments of the resulting detection ellipses to different chromatic mechanisms. Linear approximation of these segments provided an estimate for the contribution of the different cone types to the detection of red-green and blue-yellow. The results are consistent with the hypothesis that S cones contribute to the red-green mechanism with the same sign as that of the contribution from L cones. The blue-yellow mechanism very probably subtracts S-cone contrast from luminance contrast. The detection ellipse can be mapped into a circle in cone difference space. The base of this canonical transformation is a set of three cone fundamentals that differs from previously published estimates. Projecting the circle onto the three cone difference axes produces sinusoidal changes within the respective excitations. We propose that simultaneous sinusoidal changes of equal increment in the three cone difference excitations generate stimuli differing by equal saliency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.