Conventional semiconductor laser emission relies on stimulated emission of photons, which sets stringent requirements on the minimum amount of energy necessary for its operation. In comparison, exciton-polaritons in strongly coupled quantum well microcavities can undergo stimulated scattering that promises more energy-efficient generation of coherent light by 'polariton lasers'. Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature, and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density. Even though polariton diodes have been realized, electrically pumped polariton laser operation, which is essential for practical applications, has not been achieved until now. Here we present an electrically pumped polariton laser based on a microcavity containing multiple quantum wells. To prove polariton laser emission unambiguously, we apply a magnetic field and probe the hybrid light-matter nature of the polaritons. Our results represent an important step towards the practical implementation of polaritonic light sources and electrically injected condensates, and can be extended to room-temperature operation using wide-bandgap materials.
The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise at many times of the shot-noise of a coherent state has persisted, which has been attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise in turn limited the phase coherence. These limit the capability of the polariton laser as a source of coherence light. Here, we demonstrate a polariton laser with shot-noise limited intensity stability, as expected of a fully coherent state. This is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. The absence of spurious intensity fluctuations moreover enabled measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth.Such strong interactions are unique to matter-wave laser and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.
The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone.Exciton polaritons are an ideal system for studying the collective behavior of macroscopic coherent quantum states in a solid-state environment [1]. The possibility of engineering polariton trapping potentials [2] has triggered interest in using polaritonic systems to simulate complex many-body phenomena, such as the physics of high-temperature superconductors, graphene, and frustrated spin lattices [3][4][5]. Quantum simulators are envisaged as a highly desirable tool for understanding complex many-body properties of novel solid-state, chemical, and biological systems, which are otherwise difficult to access. Quantum simulations rely on the emulation of Hamiltonians via potential landscape engineering in a highly controllable quantum system [6]. Ultracold atoms are superb candidates for quantum simulation schemes [7] since modern techniques allow for arranging them in optical lattices with high precision, leading to spectacular observations such as simulating the physics of a quantum phase transition in a Bose-Hubbard system [8]. However, a system based on cold atoms needs to operate at very low temperatures in the nK-μK range, it can hardly ever be fully scalable, and its integration is difficult due to the requirement of careful isolation from the environment. Polariton gases in microcavities have been identified as promising candidates for solid-state quantum simulators, as they fulfill a range of important prerequisites. First of all, they can form bosonic condensates [9,10], which implies a macroscopic occupation of a single energy state close to thermal equilibrium [9]. Furthermore, they can enter a superfluid phase [1,11,12], possess internal (pseudo-spin) degrees of freedom [13], can be localized by lithographic [2] or optical techniques [14] possibly down to the single-polariton level [15], and their interaction constants are tunable [13]. An ideal trapping technique for the implementation of polariton quantum emulation should combine the following features: (i) the confinement depth should be tunable in a wide range;...
We observe a strong variation of the Zeeman splitting of exciton polaritons in microcavities when switching between the linear regime, the polariton lasing, and photon lasing regimes. In the polariton lasing regime the sign of Zeeman splitting changes compared to the linear regime, while in the photon lasing regime the splitting vanishes. We additionally observe an increase of the diamagnetic shift in the polariton lasing regime. These effects are explained in terms of the nonequilibrium "spin Meissner effect."
In neuronal population signals, including the electroencephalogram (EEG) and electrocorticogram (ECoG), the low-frequency component (LFC) is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI) applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold) and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy) “copy” of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative LFC of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.