BackgroundChronic neck pain after whiplash associated disorders (WAD) may lead to reduced displacement and peak velocity of neck movements. Dynamic neck movements in people with chronic WAD are also reported to display altered movement patterns such as increased irregularity, which is suggested to signify impaired motor control. As movement irregularity is strongly related to the velocity and displacement of movement, we wanted to examine whether the increased irregularity in chronic WAD could be accounted for by these factors.MethodsHead movements were completed in four directions in the sagittal plane at three speeds; slow (S), preferred (P) and maximum (M) in 15 men and women with chronic WAD and 15 healthy, sex and age-matched control participants. Head kinematics and measures of movement smoothness and symmetry were calculated from position data. Surface electromyography (EMG) was recorded bilaterally from the sternocleidomastoid and splenius muscles and the root mean square (rms) EMG amplitude for the accelerative and decelerative phases of movement were analyzed.ResultsThe groups differed significantly with regard to movement velocity, acceleration, displacement, smoothness and rmsEMG amplitude in agonist and antagonist muscles for a series of comparisons across the test conditions (range 17 – 121%, all p-values < 0.05). The group differences in peak movement velocity and acceleration persisted after controlling for movement displacement. Controlling for differences between the groups in displacement and velocity abolished the difference in measures of movement smoothness and rmsEMG amplitude.ConclusionsSimple, unconstrained head movements in participants with chronic WAD are accomplished with reduced velocity and displacement, but with normal muscle activation levels and movement patterns for a given velocity and displacement. We suggest that while reductions in movement velocity and displacement are robust changes and may be of clinical importance in chronic WAD, movement smoothness of unconstrained head movements is not.
We suggest the existence of an across-muscle phenotype with respect to fiber type proportions; some individuals display generally faster muscles and some individuals slower muscles when compared with others.
This study examined how strenuous strength training affected the Na-K pump concentration in the knee extensor muscle of well-trained men and whether leg muscle strength and endurance was related to the pump concentration. First, the pump concentration, taken as 3H-ouabain binding, was measured in top alpine skiers since strength training is important to them. Second, well-trained subjects carried out strenuous eccentric resistance training either 1, 2, or 3 times.week-1 for 3 months. The Na-K pump concentration, the maximal muscle strength in a full squat lift (one repetition maximum, 1 RM), and the muscle endurance, taken as the number of full squat lifts of a mass of 70% of the 1 RM load, were measured before and after the training period. The mean pump concentration of the alpine skiers was 425 (SEM 11) nmol.kg-1 wet muscle mass. The subjects in part two increased their maximal strength in a dose-dependent manner. The muscle endurance increased for all subjects but independently of the training programme. From a mean starting value of 356 (SEM 6) nmol.kg-1 the mean Na-K pump concentration increased by 54 (SEM 15) nmol.kg-1 (+15%, P < 0.001) when the results for all subjects were pooled. The effect was larger for those who had trained twice a week than for those who had trained only once a week (P = 0.025), suggesting that the effect of strength training depended on the amount of training carried out. The muscle strength and endurance were not related to the pump concentration, suggesting that the pumping power of this enzyme did not limit the performance during heavy lifting. However, the individual improvements in the endurance test during the training period correlated with the individual changes in the pump concentration (rSpearman = 0.5; P = 0.01) which could mean that a common factor both increases the pump concentration and makes the muscles more adapted to repeated heavy lifting.
Increased HSP expression in response to acute exercise is well documented in animal studies, and there is growing evidence that similar responses occur in man. In general, many human exercise studies have investigated the HSP response to low force continuous activity, while the knowledge about the HSP response to high force intermittent type of activity, like weight training, is so far sparse. In addition, most studies have used untrained subjects, and a common observation is that acute low force continuous activity in untrained individuals increases the HSP expression in these individuals. The main scope of this study was to investigate the HSP response in very well trained males subjected to longitudinal high intensity exercise, and if this response was dependent on exercise modality [i.e. eccentric (ECC) or concentric (CON) contractions]. Very well trained males performed progressive strength training consisting of either high force ECC or high force CON elbow flexions 2-3 times a week for 12 weeks. Compared with pre-exercise levels, HSP72 expression decreased by 46.1% (P<0.05) after CON contractions. GRP75 expression was unchanged after ECC or CON contractions, while ubiquitin expression decreased by 19.9% (P<0.02) after ECC contractions. These findings imply that chronic, intensive exercise may attenuate the HSP response in well-trained males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.