In the agricultural sector, plant leaf diseases and harmful insects represent a major challenge. Faster and more reliable prediction of leaf diseases in crops may help develop an early treatment technique while reducing economic losses considerably. Current technological advances in deep learning have made it possible for researchers to improve the performance and accuracy of object detection and recognition systems significantly. In this chapter, using images of plant leaves, the authors introduced a deep-learning method with different datasets for detecting leaf diseases in different plants and concerned with a novel approach to plant disease recognition model, based on the classification of the leaf image, by the use of deep convolutional networks. Ultimately, the approach of developing deep learning methods on increasingly large and accessible to the public image datasets provides a viable path towards massive global diagnosis of smartphone-assisted crop disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.