Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, anti-proliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon “as curcumin (NP)”, was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid (2 h vs > 72 h) and more efficient cellular uptake then curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-κB activation and in suppression of NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin.
Extensive research within the last two decades has revealed that most chronic illnesses, including cancer, diabetes, and cardiovascular and pulmonary diseases, are mediated through chronic inflammation. Thus, suppressing chronic inflammation has the potential to delay, prevent, and even treat various chronic diseases, including cancer. Various nutraceuticals from fruits, vegetables, vitamins, spices, legumes, and traditional Chinese and Ayurvedic medicine have been shown to safely suppress proinflammatory pathways; however, their low bioavailability in vivo limits their use in preventing and treating cancer. We describe here the potential of nanotechnology to fill this gap. Several nutraceuticals, including curcumin, green tea polyphenols, coenzyme Q, quercetin, thymoquinone and others, have been packaged as nanoparticles and proven to be useful in "nano-chemoprevention" and "nano-chemotherapy."
Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also called black cumin), has been shown to exhibit anti-inflammatory and anti-cancer activities. In this report we employed polymer-based nanoparticle approach to improve upon its effectiveness and bioavailability. TQ was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and the stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy confirmed particle diameter ranged between 150-200 nm. Electrophoretic gel shift mobility assay showed that TQ nanoparticles (NP) were more active than TQ in inhibiting NF-κB activation and in suppressing the expression of cyclin D1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), markers of cell proliferation, metastasis and angiogenesis, respectively. TQ-NP was also more potent than TQ in suppressing proliferation of colon cancer, breast cancer, prostate cancer, and multiple myeloma cells. Esterase staining for plasma membrane integrity revealed that TQ-NP was more potent than TQ in sensitizing leukemic cells to TNF-and paclitaxel-induced apoptosis. Overall our results demonstrate that encapsulation of TQ into nanoparticles enhances its anti-proliferative, anti-inflammatory, and chemosensitizing effects.
Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patientderived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling. See related commentary by Shi et al., p.
Cervical cancer is the third most common gynecologic cancer in the United States. The presence and possible involvement of several cytokines have been studied in cervical cancer; however, very little data, if any, are available on whether cervical tumors are responsive to stimulation by the macrophage colony-stimulating factor-1 (CSF-1). Given the involvement of c-fms and its ligand CSF-1 in gynecologic cancers, such as that of the uterus and the ovaries, we have examined the expression of c-fms and CSF-1 in cervical tumor (n = 17) and normal cervix (n = 8) samples. The data show that c-fms and its ligand are significantly higher in cervical carcinomas compared with normal samples. Immunohistochemistry not only showed that tumor cells expressed significantly higher levels of c-fms but also c-fms levels were markedly higher in tumor cells than tumor-associated stromal cells. Blocking c-fms activity in cervical cancer cells, which express CSF-1 and c-fms, resulted in increased apoptosis and decreased motility compared with control, suggesting that CSF-1/c-fms signaling may be involved in enhanced survival and possibly invasion by cervical cancer cells via an autocrine mechanism. Combined, the data show for the first time the induction of CSF-1 and c-fms in cervical carcinomas and suggest that c-fms activation may play a role in cervical carcinogenesis. Additionally, our data suggest that transforming growth factor-B1 may be a factor in inducing the expression of c-fms in cervical cancer cells. The data suggest that c-fms may be a valuable therapeutic target in cervical cancer. [Cancer Res 2007;67(5):1918-26]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.