Transgenic Escherichia coli expressing pyrroloquinoline-quinone (PQQ) synthase gene from Deinococcus radiodurans showed superior survival during Rose Bengal induced oxidative stress. Such cells showed significantly low levels of protein carbonylation as compared to non-transgenic control. In vitro, PQQ reacted with reactive oxygen species with rate constants comparable to other well known antioxidants, producing non-reactive molecular products. PQQ also protected plasmid DNA and proteins from the oxidative damage caused by c-irradiation in solution. The data suggest that radioprotective/oxidative stress protective ability of PQQ in bacteria may be consequent to scavenging of reactive oxygen species per se and induction of other free radical scavenging mechanism.
A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.
SummaryDeinococcus radiodurans mutant lacking pyrroloquinoline-quinone (PQQ) synthesis shows sensitivity to g-rays and impairment of DNA double strand break repair. The genome of this bacterium encodes five putative proteins having multiple PQQ binding motifs. The deletion mutants of corresponding genes were generated, and their response to DNA damage was monitored. Only the Ddr2518 mutant exhibited higher sensitivity to DNA damage. Survival of these cells decreased by 3-log cycle both at 6 kGy g-rays and 1200 J m -2 UV (254 nm) radiation, and 2.5-log cycle upon 14 days desiccation at 5% humidity. The Ddr2518 mutant showed complete inhibition of DSB repair until 24 h PIR and disappearance of a few phosphoproteins. The Ddr2518pqqE:cat double mutant showed g-ray sensitivity similar to Ddr2518 indicating functional interaction of these genes in D. radiodurans. DR2518 contains a eukaryotic type Ser/ Thr kinase domain and structural topology suggesting stress responsive transmembrane protein. Its autokinase activity in solution was stimulated by nearly threefold with PQQ and twofold with linear DNA, but not with circular plasmid DNA. More than 15-fold increase in dr2518 transcription and severalfold enhanced in vivo phosphorylation of DR2518 were observed in response to g irradiation. These results suggest that DR2518 as a DNA damageresponsive protein kinase plays an important role in radiation resistance and DNA strand break repair in D. radiodurans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.