A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.
Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases.
MiRNAs are increasingly recognized as biomarkers for the diagnosis of cancers where they are profiled from tumor tissue (intracellular miRNAs) or serum/plasma samples (extracellular miRNAs). To improve detection of reliable biomarkers from blood samples, we first compiled a healthy reference miRNome and established a well-controlled analysis pipeline allowing for standardized quantification of circulating miRNAs. Using whole miRNome and custom qPCR arrays, miRNA expression profiles were analyzed in 126 serum, whole blood and tissue samples of healthy volunteers and melanoma patients and in primary melanocyte and keratinocyte cell lines. We found characteristic signatures with excellent prognostic scores only in late stage but not in early stage melanoma patients. Upon comparison of melanoma tissue miRNomes with matching serum samples, several miRNAs were identified to be exclusively tissue-derived (miR-30b-5p, miR-374a-5p and others) while others had higher expression levels in serum (miR-3201 and miR-122-5p). Here we have compiled a healthy and widely applicable miRNome from serum samples and we provide strong evidence that levels of cell-free miRNAs only change significantly at later stages of melanoma progression, which has serious implications for miRNA biomarker studies in cancer.
Background:Over the past years, some members of the family of suppressor of cytokine signalling (SOCS) proteins have emerged as potential tumour suppressors. This study aimed at investigating the clinical significance of SOCS proteins in colorectal carcinoma (CRC).Methods:We integrated publicly available microarray expression data on CRC in humans, analysed the expression pattern of SOCSs and assessed the predictive power of SOCS2 and SOCS6 for diagnostic purposes by generating receiver operating characteristic curves. Using laser microdissected patient material we assessed SOCS expression on RNA and protein levels as well as their methylation status in an independent CRC patient cohort. Finally, we investigated the prognostic value of SOCS2 and SOCS6.Results:The meta-analysis as well as the independent patient cohort analysis reveal a stage-independent downregulation of SOCS2 and SOCS6 and identify both molecules as diagnostic biomarkers for CRC. We demonstrate a different methylation pattern within the SOCS2 promoter between tumour tissue and normal control tissue in 25% of CRC patients. Furthermore, early CRC stage patients with low expression of SOCS2 display significantly shorter disease-free survival.Conclusions:Our data offers evidence that SOCS2 and SOCS6 levels are reduced in CRC and may serve as diagnostic biomarkers for CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.