Understanding flow phenomena in the pulmonary acinus is important for predicting particle transport and deposition and hence, in designing effective drug delivery strategies for the lung. In the current study, a three-dimensional honeycomb-like geometry involving a central airspace and surrounding alveoli is used to represent an alveolar duct and sacs. Numerical results predict that flow in the presence of wall motion is characterized by the presence of a developing recirculation region within the cavity and by a flow entrainment region indicative of the weak nature of interaction between duct and cavity. Under the normal breathing condition (2.5 seconds) and volumetric expansion (~25%) considered here, recirculation disappears for Re<0.6. Alveolar flow in higher generations (at lower Reynolds number) results from significantly higher entrainment of the ductal flow, and does not exhibit any recirculation. In an asymmetric arrangement of the alveolar cluster, topological differences in cavity result in significant differences in the size of recirculation and the size of entrainment region within the alveoli of the same acinar generation, indicative of a non-uniform alveolar ventilation. The flow in the terminal alveolar sac is non-recirculating and not affected by variation in geometrical features.
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number ͑Re͒. For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan-Carpenter ͑K C ͒ number.
A registration-based multiscale method to obtain a deforming geometric model of mouse acinus is presented. An intact mouse lung was fixed by means of vascular perfusion at a hydrostatic inflation pressure of 20 cmH(2)O. Microcomputed tomography (μCT) scans were obtained at multiple resolutions. Substructural morphometric analysis of a complete acinus was performed by computing a surface-to-volume (S/V) ratio directly from the 3D reconstruction of the acinar geometry. A geometric similarity is observed to exist in the acinus where S/V is approximately preserved anywhere in the model. Using multiscale registration, the shape of the acinus at an elevated inflation pressure of 25 cmH(2)O is estimated. Changes in the alveolar geometry suggest that the deformation within the acinus is not isotropic. In particular, the expansion of the acinus (from 20 to 25 cmH(2)O) is accompanied by an increase in both surface area and volume in such a way that the S/V ratio is not significantly altered. The developed method forms a useful tool in registration-driven fluid and solid mechanics studies as displacement of the alveolar wall becomes available in a discrete sense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.