Protein aggregation critically affects cell viability in neurodegenerative diseases, but whether this also occurs in ischemic brain injury remains elusive. Prior studies report the post-ischemic aggregation of ubiquitin, small ubiquitin-related modifier (SUMO) and ribosomes, however whether other proteins are also affected is unknown. Here we employed a proteomic approach to identify the insoluble, aggregated proteome after cerebral ischemia. Mice underwent transient middle cerebral artery occlusion or sham-surgery. After 1-hour reperfusion, prior to apparent brain injury, mice were sacrificed and detergent-insoluble proteins were obtained and identified by nanoLC-MS/MS. Naturally existing insoluble proteins were determined in sham controls and aggregated proteins after cerebral ischemia/reperfusion were identified. Selected aggregated proteins found by proteomics were biochemically verified and aggregation propensities were studied during ischemia with or without reperfusion. We found that ischemia/reperfusion induces the aggregation of RNA-binding and heat-shock proteins, ubiquitin, SUMO and other proteins involved in cell signalling. RNA-binding proteins constitute the largest group of aggregating proteins in ischemia. These include TDP43, FUS, hnRNPA1, PSF/SFPQ and p54/NONO, all of which have been linked to neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal dementia. The aggregation of neurodegeneration-related disease proteins in cerebral ischemia unveils a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke.
Colistin resistance in
Enterobacteriaceae
especially
Klebsiella pneumoniae
and
Escherichia coli
is driving the evolution of pan drug resistant strains. Screening a library of 13 plant nutraceuticals led to the identification of acetyl shikonin and ursolic acid, which exhibited synergy with colistin against extremely drug resistant (XDR) clinical strains of
E. coli
(U3790) and
K. pneumoniae
(BC936). Ursolic acid caused a significant colistin MIC reversal of 16-fold in U3790 and 4-fold in BC936 strains. Ursolic acid also potentiated the bactericidal effect of colistin against both U3790 and BC936 by causing ~ 4 to 4.5 log fold decline in CFU of both clinical isolates in a time kill assay. At 2× minimum effective concentration, ursolic acid was non-toxic to zebrafish as evidenced by brain and liver enzyme profiles and by histopathology studies. In combination with colistin, ursolic acid reduced bacterial bioburden of U3790/BC936 by 1–1.58 log fold from the infected muscle tissue of zebrafish. Mechanistic explorations via studies on real time efflux, membrane potential and intracellular accumulation of dansyl chloride tagged colistin revealed that colistin efflux is inhibited by ursolic acid. In addition, ursolic acid also enhanced outer membrane permeability which probably facilitates colistin’s attack on outer and inner membranes. Our study shows that ursolic acid synergizes with colistin by inhibiting colistin efflux in
Enterobacteriaceae
that helps to curtail colistin resistant
Enterobacteriaceae
.
Electronic supplementary material
The online version of this article (10.1186/s13568-019-0750-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.