The emergence of the web has fundamentally affected most aspects of information communication, including scholarly communication. The immediacy that characterizes publishing information to the web, as well as accessing it, allows for a dramatic increase in the speed of dissemination of scholarly knowledge. But, the transition from a paper-based to a web-based scholarly communication system also poses challenges. In this paper, we focus on reference rot, the combination of link rot and content drift to which references to web resources included in Science, Technology, and Medicine (STM) articles are subject. We investigate the extent to which reference rot impacts the ability to revisit the web context that surrounds STM articles some time after their publication. We do so on the basis of a vast collection of articles from three corpora that span publication years 1997 to 2012. For over one million references to web resources extracted from over 3.5 million articles, we determine whether the HTTP URI is still responsive on the live web and whether web archives contain an archived snapshot representative of the state the referenced resource had at the time it was referenced. We observe that the fraction of articles containing references to web resources is growing steadily over time. We find one out of five STM articles suffering from reference rot, meaning it is impossible to revisit the web context that surrounds them some time after their publication. When only considering STM articles that contain references to web resources, this fraction increases to seven out of ten. We suggest that, in order to safeguard the long-term integrity of the web-based scholarly record, robust solutions to combat the reference rot problem are required. In conclusion, we provide a brief insight into the directions that are explored with this regard in the context of the Hiberlink project.
Increasingly, scholarly articles contain URI references to “web at large” resources including project web sites, scholarly wikis, ontologies, online debates, presentations, blogs, and videos. Authors reference such resources to provide essential context for the research they report on. A reader who visits a web at large resource by following a URI reference in an article, some time after its publication, is led to believe that the resource’s content is representative of what the author originally referenced. However, due to the dynamic nature of the web, that may very well not be the case. We reuse a dataset from a previous study in which several authors of this paper were involved, and investigate to what extent the textual content of web at large resources referenced in a vast collection of Science, Technology, and Medicine (STM) articles published between 1997 and 2012 has remained stable since the publication of the referencing article. We do so in a two-step approach that relies on various well-established similarity measures to compare textual content. In a first step, we use 19 web archives to find snapshots of referenced web at large resources that have textual content that is representative of the state of the resource around the time of publication of the referencing paper. We find that representative snapshots exist for about 30% of all URI references. In a second step, we compare the textual content of representative snapshots with that of their live web counterparts. We find that for over 75% of references the content has drifted away from what it was when referenced. These results raise significant concerns regarding the long term integrity of the web-based scholarly record and call for the deployment of techniques to combat these problems.
Persistent IDentifiers (PIDs), such as DOIs, Handles and ARK identifiers, play a significant role in the identification of a wide variety of assets that are created and used in scholarly endeavours, including research papers, datasets, images, etc. Motivated by concerns about long-term persistence, among others, PIDs are minted outside the information access protocol of the day, HTTP. Yet, value-added services targeted at both humans and machines routinely assume or even require resources identified by means of HTTP URIs in order to make use of off-the-shelf components like web browsers and servers. Hence, an unambiguous bridge is required between the PID-oriented paradigm that is widespread in research communication and the HTTP-oriented web, semantic web and linked data environment. This paper describes the problem, and a possible solution towards defining and deploying such an interoperable bridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.