Translational readthrough generates proteins with extended C‐termini, which often possess distinct properties. Here, we have used various reporter assays to demonstrate translational readthrough of AGO1 mRNA. Analysis of ribosome profiling data and mass spectrometry data provided additional evidence for translational readthrough of AGO1. The endogenous readthrough product, Ago1x, could be detected by a specific antibody both in vitro and in vivo. This readthrough process is directed by a cis sequence downstream of the canonical AGO1 stop codon, which is sufficient to drive readthrough even in a heterologous context. This cis sequence has a let‐7a miRNA‐binding site, and readthrough is promoted by let‐7a miRNA. Interestingly, Ago1x can load miRNAs on target mRNAs without causing post‐transcriptional gene silencing, due to its inability to interact with GW182. Because of these properties, Ago1x can serve as a competitive inhibitor of miRNA pathway. In support of this, we observed increased global translation in cells overexpressing Ago1x. Overall, our results reveal a negative feedback loop in the miRNA pathway mediated by the translational readthrough product of AGO1.
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. Here, we investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans spanning 100 kya to the present and reconstructed 459 bacterial metagenome-assembled genomes (MAGs). We identified a biosynthetic gene cluster (BGC) shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites we name paleofurans. This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.
Endothelial cells respond to mechanical stimuli such as stretch. This property can be exploited with caution to induce angiogenesis which will have immense potential to treat pathological conditions associated with insufficient angiogenesis. The primary aim of this study is to test if low-pressure shock waves can be used to induce angiogenesis. Using a simple diaphragm-based shock tube, we demonstrate that a single pulse of low pressure (0.4 bar) shock wave is enough to induce proliferation in bovine aortic endothelial cells and human pulmonary microvascular endothelial cells. We show that this is associated with enhanced Ca influx and phosphorylation of phosphatidylinositol-3-kinase (PI3K) which is normally observed when endothelial cells are exposed to stretch. We also demonstrate the pro-angiogenic effect of shock waves of single pulse (per dose) using murine back punch wound model. Shock wave treated mice showed enhanced wound-induced angiogenesis as reflected by increased vascular area and vessel length. They also showed accelerated wound closure compared to control mice. Overall, our study shows that just a single pulse/shot (per dose) of shock waves can be used to induce angiogenesis. Importantly, we demonstrate this effect using a pulse of low-pressure shock waves (0.4 bar, in vitro and 0.15 bar, in vivo). KEY MESSAGES: Low-pressure single-pulse shock waves can induce endothelial cell migration and proliferation. This effect is endothelial cell specific. These shock waves enhance wound-induced angiogenesis in vivo. These shock waves can also accelerate wound healing in vivo.
Naturally occurring fluorescence has been observed in multiple species ranging from bacteria to birds. In macroscopic animals such as birds, fluorescence provides a visual communication signal. However, the functional significance of this phenomenon is unknown in most cases. Though photoprotection is attributed to fluorescence under ultraviolet (UV) light in some organisms, it lacks direct experimental evidence. Here, we demonstrate naturally occurring fluorescence under UV light in a eutardigrade belonging to the genus Paramacrobiotus . Using a natural variant that lacks fluorescence, we show that the fluorescence confers tolerance to lethal UV radiation. Remarkably, the fluorescent extract from Paramacrobiotus sp. could protect the UV-sensitive tardigrade Hypsibius exemplaris and nematode Caenorhabditis elegans from germicidal UV radiation. We propose that Paramacrobiotus sp. possess a protective fluorescent shield that absorbs harmful UV radiation and emits harmless blue light.
Naturally occurring fluorescence has been observed in multiple species ranging from bacteria to birds. In macroscopic animals such as birds and fishes, fluorescence provides a visual communication signal. However, the functional significance of this phenomenon is not known in most cases. Though photoprotection is attributed to fluorescence under ultraviolet (UV) light in some organisms, it lacks direct experimental evidence. Here, we have identified a new species of eutardigrade belonging to the genus Paramacrobiotus, which exhibits fluorescence under UV light. Using a natural variant of the same species that lacks fluorescence, we show that the fluorescence confers tolerance to lethal UV radiation. Remarkably, we could transfer this property to UV-sensitive Hypsibius exemplaris, another eutardigrade, and also to C. elegans, a nematode. Using high performance liquid chromatography (HPLC) we isolated the fluorescent compound from Paramacrobiotus sp. This compound has excitation maxima (λex) at 370 nm and emission maxima (λem) at 420-430 nm. We propose that Paramacrobiotus sp. uses a fluorescent shield that absorbs harmful UV radiation, and emits harmless blue light, thereby protecting itself from the lethal effects of UV radiation.Summary statementTardigrades are well known for their tolerance to extreme environmental conditions. In this study, we have identified a new tardigrade species that employs a fluorescent shield to protect itself from the germicidal ultra violet radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.