The present work deals with the development of bisphenol‐BA based benzoxazines and to study their behavior toward utilization for thermal, high‐dielectric, low‐dielectric, and anti‐corrosion applications. A new type of bifunctional benzoxazine resins were synthesized using bisphenol‐BA with different types of amines and characterized using FTIR, 1H‐NMR spectra, DSC, and TGA techniques. In the present study, thermally stable bisphenol‐BA with trifluoromethylaniline benzoxazine (BBA‐tfma) and bisphenol‐BA with furfurylamine benzoxazine (BBA–ffa) were selected as matrices for the preparation of composites with SBA‐15, bio‐silica (from Bermuda grass) and reduced graphene oxide. The results indicated that the poly(BBA‐tfma) with 5 wt% SBA‐15 composites and poly(BBA‐ffa) with 10 wt% bio‐silica composites showed the lowest dielectric constant value of 1.71 and 1.87, respectively. While in contrast, the 5 wt% of reduced graphene oxide (rGO) reinforced poly(BBA‐tfma) exhibits highest value of dielectric constant (k = 8.49). Results from corrosion studies ascertain that the bisphenol‐BA with aminoethoxyethanol benzoxazine, that is, poly(BBA‐aee) possess better mild steel corrosion protection behavior than that of other benzoxazines. Data resulting from different studies indicate that the bisphenol‐BA‐based benzoxazines and their composites can be effectively used for different industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.