Zika virus (ZIKV) is a reemerging flavivirus causing an ongoing pandemic and public health emergency worldwide. There are currently no effective vaccines or specific therapy for Zika infection. Rapid, low-cost diagnostics for mass screening and early detection are of paramount importance in timely management of the infection at the point-of-care (POC). The current Zika diagnostics are laboratory-based and cannot be implemented at the POC particularly in resource-limited settings. Here, we develop a nanoparticle-enhanced viral lysate electrical sensing assay for Zika virus detection on paper microchips with printed electrodes. The virus is isolated from biological samples using antibodies and labeled with platinum nanoparticles (PtNPs) to enhance the electrical signal. The captured ZIKV-PtNP complexes are lysed using a detergent to release the electrically charged molecules associated with the intact virus and the PtNPs on the captured viruses. The released charged molecules and PtNPs change the electrical conductivity of the solution, which can be measured on a cellulose paper microchip with screen-printed microelectrodes. The results confirmed a highly specific detection of ZIKV in the presence of other non-targeted viruses, including closely related flaviviruses such as dengue virus-1 and dengue virus-2 with a detection limit down to 101 virus particles per μl. The developed assay is simple, rapid, and cost-effective and has the potential for POC diagnosis of viral infections and treatment monitoring.
A low-cost and easy-to-fabricate microchip remains a key challenge for the development of true point-of-care (POC) diagnostics. Cellulose paper and plastic are thin, light, flexible, and abundant raw materials, which make them excellent substrates for mass production of POC devices. Herein, a hybrid paper–plastic microchip (PPMC) is developed, which can be used for both single and multiplexed detection of different targets, providing flexibility in the design and fabrication of the microchip. The developed PPMC with printed electronics is evaluated for sensitive and reliable detection of a broad range of targets, such as liver and colon cancer protein biomarkers, intact Zika virus, and human papillomavirus nucleic acid amplicons. The presented approach allows a highly specific detection of the tested targets with detection limits as low as 102 ng mL−1 for protein biomarkers, 103 particle per milliliter for virus particles, and 102 copies per microliter for a target nucleic acid. This approach can potentially be considered for the development of inexpensive and stable POC microchip diagnostics and is suitable for the detection of a wide range of microbial infections and cancer biomarkers.
Clear cell renal cell carcinoma (ccRCC) displays a highly varying clinical progression, from slow growing localized tumors to very aggressive metastatic disease (mRCC). Almost a third of all patients with ccRCC show metastatic dissemination at presentation while another third develop metastasis during the course of the disease. Survival rates of mRCC patients remain low despite the development of novel targeted treatment regimens. Biomarkers indicating disease progression could help to define its aggressive potential and thus guide patient management. However, molecular markers that can reliably assess metastatic dissemination and disease recurrence in ccRCC have not been recommended for clinical practice to date. Liquid biopsies could provide an attractive and non-invasive method to determine the risk of recurrence or metastatic dissemination during follow-up and thus assist the search for surveillance biomarkers in ccRCC tumors. A wide spectrum of circulating molecules have already shown considerable potential for ccRCC diagnosis and prognostication. In this review, we outline state of the art of the key circulating analytes such as cfDNA, cfRNA, proteins, and exosomes that may serve as biomarkers for the longitudinal monitoring of ccRCC progression to metastasis. Moreover, we address some of the prevailing limitations in the past approaches and present promising adoptable technologies that could help to pursue the implementation of liquid biopsies as a prognostic tool for mRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.