Each year, the food supply chain produces more than 1.3 billion tons of food and agricultural waste, which poses serious environmental problems. The loss of the massive quantity of secondary and primary metabolites retrievable from this resource is a significant concern. What if there is a global solution that caters to the numerous problems arising due to the humongous volume of waste biomass generated in every part of the world? Insects, the tiny creatures that thrive in decaying organic matter, which can concentrate the nutrients present in dilute quantities in a variety of by-products, are an economically viable option. The bioconversion and nutritional upcycling of waste biomass with insects yield high-value products such as protein, lipids, chitin and frass. Insect-derived proteins can replace conventional protein sources in feed formulations. Notably, the ability of the black soldier fly (BSF) or Hermetia illucens to grow on diverse substrates such as agri-food industry side streams and other organic waste proves advantageous. However, the data on industrial-scale extraction, fractionation techniques and biorefinery schemes for screening the nutritional potential of BSF are scarce. This review attempts to break down every facet of insect processing and analyze the processing methods of BSF, and the functional properties of nutrients obtained thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.