Ellagic acid, a naturally occurring polyphenol, extracted from pomegranate husk, is found to be a very good organic electrode material for rechargeable lithium batteries with high reversible capacities of ~450 and 200 mA h g(-1) at C/10 and C/2.5 discharge rates, respectively; ex situ NMR studies reveal possible lithiation-delithiation modes at different stages of the charge-discharge process.
Results of a high resolution photoemission and electrochemistry study of Se adsorption on Au(111) and Ag(111) surfaces performed by immersion of pristine samples into an aqeuous solution of Na 2 Se are presented. Cyclic voltammetry on Au shows formation of selenium adsorbed species and the structures observed in reductive desorption are related to the atomic and polymeric species observed in XPS. In the case of Au(111) XPS spectra in the Se(3d) region indeed show two main features attributed to Se chemisorbed atomically and polymeric Se 8 features. Smaller structures due to other types of Se conformations were also observed. The Au(4f) peak line shape does not show core level shifts indicative of Au selenide formation. In the case of silver, XPS spectra for the Ag(3d) show a broadening of the peak and a deconvolution into Ag B bulk like and Ag Se components shows that the Ag Se is located at a lower binding energy, an effect similar to oxidation and sulfidation of Ag. The Se(3d) XPS spectrum is found to be substantially different from the Au case and dominated by atomic type Se due to the selenide, though a smaller intensity Se structure at an energy similar to the Se 8 structure for Au is also observed. Changes in the valence band region related to Se adsorption are reported.
Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li ions giving rise to very high specific capacity of 1100 mA h g at a discharge current of 50 mA g and ∼120 mA h g at a high discharge current of 3 A g are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.
Substitutional self-assembly of thiol and selenol SAMs from a lying-down phase of butanedithiol (C4DT) (SAM) were investigated using thiols, disulfide, and diselenide molecules. The intent was to address the question if formation of a lying-down dithiol phase is an impediment to formation of standing-up dithiol phases as it has been assumed. It is demonstrated that this is not the case, and the C4DT SAM, where both the sulfur atoms are chemisorbed on gold, is removed and replaced in all cases. Differences in substitution kinetics are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.