Abstract-Realizing the target of high reliability and availability is a crucial concept in the IoT context. Different types of IoT applications introduce several requirements and obstacles. One of the important aspects degrading network performance is the node mobility inside the network. Without a solid and adaptive mechanism, node mobility can disrupt the network performance due to dissociations from the network. Hence, reliable techniques must be incorporated to tackle the overhead of node movement. In this paper, the overhead of mobility on both IEEE 802.15.4e timeslotted channel hopping (TSCH) and low latency deterministic (LLDN) modes is investigated. These two modes can be considered as the MAC layer of the IoT paradigm because of their importance and resilience to different network obstacles. In addition, the set of metrics and limitations that influence the network survivability will be identified to ensure efficient mobile node handling process. Both TSCH and LLDN have been implemented via the Contiki OS to determine their functionality. TSCH has been demonstrated to have better node connectivity due to the impact of frame collision in LLDN. In addition, by neglecting the overhead of collision, the LLDN has been shown to have better connectivity and low radio duty cycle (RDC).Index Terms-IEEE 802.15.4e, TSCH, LLDN, Node mobility, Contiki OS.
Abstract-A dynamic cluster head election protocol (DCHEP) is proposed in this work to improve network availability and energy efficiency for mobile wireless sensor networks (WSNs) under the beacon-enabled IEEE 802.15.4 standard. The proposed protocol (DCHEP) is developed and simulated using CASTALIA/OMNET++ with a realistic radio model and node behaviour. DCHEP improves the network availability and lifetime and maintains clusters hierarchy in a proactive manner even in a mobile WSN where all the nodes including cluster heads (CHs) are mobile, this is done by dynamically switching CHs allowing nodes to act as multiple backup cluster heads (BCHs) with different priorities based on their residual energy and connectivity to other clusters. DCHEP is a flexible and scalable solution targeted for dense WSNs with random mobility.The proposed protocol achieves an average of 33% and 26% improvement to the availability and energy efficiency respectively compared with the original standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.