A technique to measure the electrical conductivity of single molecules has been demonstrated. The method is based on trapping molecules between an STM tip and a substrate. The spontaneous attachment and detachment of a,o-alkanedithiol molecular wires was easily monitored in the time domain. Electrical contact between the target molecule and the gold probes was achieved by the use of thiol groups present at each end of the molecule. Characteristic jumps in the tunnelling current were observed when the tip was positioned at a constant height and the STM feedback loop was disabled. Histograms of the measured current jump values were used to calculate the molecular conductivity as a function of bias and chain length. In addition, it is demonstrated that these measurements can be carried out in a variety of environments, including aqueous electrolytes. The changes in conductivity with chain length obtained are in agreement with previous results obtained using a conducting AFM and the origin of some discrepancies in the literature is analysed.
Spontaneous formation of stable molecular wires between a gold scanning tunneling microscopy (STM) tip and substrate is observed when the sample has a low coverage of alpha,omega-dithiol molecules and the tunneling resistance is made sufficiently small. Current-distance curves taken under these conditions exhibit characteristic current plateaux at large tip-substrate separations from which the conductivity of a single molecule can be obtained. The versatility of this technique is demonstrated using redox-active molecules under potential control, where substantial reversible conductivity changes from 0.5 to 2.8 nS were observed when the molecule was electrochemically switched from the oxidized to the reduced state.
In recent years, several experimental studies have shown that different values of single molecule conductance can be observed for the same type of molecule. Although this observation has been tentatively attributed either to differing molecular conformations or to differing contact geometries, the reason for the different conductance groups remains still unclear. To elucidate this issue, a comparison of four different experimental methods to measure single molecule conductance is presented here for the case of alkanedithiols between gold electrodes, which is considered to be a model system. Three different fundamental conductance groups exhibiting low, medium, and high conductance, respectively, were observed for each molecule. The comparison of measurements performed on surface areas with different step densities reveals that the medium (high) conductance group can be attributed to the adsorption of one (two) contacting S atoms at step sites, whereas the low conductance group can be attributed to molecules adsorbed between flat surface regions. This finding is corroborated by a gap separation analysis for the different conduction groups, by matrix isolation measurements, and by a comparison of the results presented here with conductance measurements performed on self-assembled monolayers. The results presented here help to resolve apparent discrepancies in single molecule conductance measurements and are of general significance for molecular electronics and electrochemistry, since they show how molecular conductance is influenced by the contact morphology and, thus, by the atomic structure of the substrate surface.
The temperature dependence of the single molecule conductance (SMC) of alpha,omega-alkanedithiols has been investigated using a scanning tunnelling microscopy (STM) method. This is based on trapping molecules between a gold STM tip and a gold substrate and measuring directly the current across the molecule under different applied potentials. A pronounced temperature dependence of the conductance, which scales logarithmically with T(1), is observed in the temperature range between 293 and 353 K. It is proposed the origin of this dependence is the change in distribution between molecular conformers rather than changes in either the conduction mechanism or the electronic structure of molecule. For alkanedithiols the time averaged conformer distribution shifts to less elongated conformers at higher temperatures thus giving rise to higher conductance across the molecular bridges. This is analysed by first calculating energy differences between different conformers and then calculating their partition distribution. A simple tunnelling model is then used to calculate the temperature dependent conductance based on the conformer distribution. These findings demonstrate that charge transport through single organic molecules at ambient temperatures is a subtle and highly dynamic process that cannot be described by analysing only one molecular conformation corresponding to the lowest energy geometry of the molecule.
Experimental data and theoretical notions are presented for 6-[1'-(6-mercapto-hexyl)-[4,4']bipyridinium]-hexane-1-thiol iodide (6V6) "wired" between a gold electrode surface and tip in an in situ scanning tunneling microscopy configuration. The viologen group can be used to "gate" charge transport across the molecular bridge through control of the electrochemical potential and consequently the redox state of the viologen moiety. This gating is theoretically considered within the framework of superexchange and coherent two-step notions for charge transport. It is shown here that the absence of a maximum in the Itunneling versus electrode potential relationship can be fitted by a "soft" gating concept. This arises from large configurational fluctuations of the molecular bridge linked to the gold contacts by flexible chains. This view is incorporated in a formalism that is well-suited for data analysis and reproduces in all important respects the 6V6 data for physically sound values of the appropriate parameters. This study demonstrates that fluctuations of isolated configurationally "soft" molecules can dominate charge transport patterns and that theoretical frameworks for compact monolayers may not be directly applied under such circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.