The dependence of the optical properties of spherical gold nanoparticles on particle size and wavelength were analyzed theoretically using multipole scattering theory, where the complex refractive index of gold was corrected for the effect of a reduced mean free path of the conduction electrons in small particles. To compare these theoretical results to experimental data, gold nanoparticles in the size range of 5 to 100 nm were synthesized and characterized with TEM and UV-vis. Excellent agreement was found between theory and experiment. It is shown that the data produced here can be used to determine both size and concentration of gold nanoparticles directly from UV-vis spectra. Equations for this purpose are derived, and the precision of various methods is discussed. The major aim of this work is to provide a simple and fast method to determine size and concentration of nanoparticles.
A technique to measure the electrical conductivity of single molecules has been demonstrated. The method is based on trapping molecules between an STM tip and a substrate. The spontaneous attachment and detachment of a,o-alkanedithiol molecular wires was easily monitored in the time domain. Electrical contact between the target molecule and the gold probes was achieved by the use of thiol groups present at each end of the molecule. Characteristic jumps in the tunnelling current were observed when the tip was positioned at a constant height and the STM feedback loop was disabled. Histograms of the measured current jump values were used to calculate the molecular conductivity as a function of bias and chain length. In addition, it is demonstrated that these measurements can be carried out in a variety of environments, including aqueous electrolytes. The changes in conductivity with chain length obtained are in agreement with previous results obtained using a conducting AFM and the origin of some discrepancies in the literature is analysed.
Spontaneous formation of stable molecular wires between a gold scanning tunneling microscopy (STM) tip and substrate is observed when the sample has a low coverage of alpha,omega-dithiol molecules and the tunneling resistance is made sufficiently small. Current-distance curves taken under these conditions exhibit characteristic current plateaux at large tip-substrate separations from which the conductivity of a single molecule can be obtained. The versatility of this technique is demonstrated using redox-active molecules under potential control, where substantial reversible conductivity changes from 0.5 to 2.8 nS were observed when the molecule was electrochemically switched from the oxidized to the reduced state.
Starting with a simple introduction into the phenomenon of surface stress from a thermodynamic as well as from an atomistic viewpoint, the currently available literature on surface stress of clean and adsorbate-covered surfaces is reviewed. The equations which are used to calculate the adsorbate-induced changes of the surface stress tensor from cantilever bending experiments are derived and their limitations are discussed. It is shown for several examples that charge transfer effects have a pronounced influence on the adsorbate-induced surface stress. The linear relation between surface stress and surface charge which has been observed experimentally at the metal-electrolyte interface is rationalized in the framework of thermodynamics. The role of surface stress as a driving force for surface reconstruction and for the structural organization of surfaces on a mesoscopic scale are discussed for a few selected examples. Novel applications of surface stress effects for sensor and actuator applications are described.
There is much discussion of molecules as components for future electronic devices. However, the contacts, the local environment and the temperature can all affect their electrical properties. This sensitivity, particularly at the single-molecule level, may limit the use of molecules as active electrical components, and therefore it is important to design and evaluate molecular junctions with a robust and stable electrical response over a wide range of junction configurations and temperatures. Here we report an approach to monitor the electrical properties of single-molecule junctions, which involves precise control of the contact spacing and tilt angle of the molecule. Comparison with ab initio transport calculations shows that the tilt-angle dependence of the electrical conductance is a sensitive spectroscopic probe, providing information about the position of the Fermi energy. It is also shown that the electrical properties of flexible molecules are dependent on temperature, whereas those of molecules designed for their rigidity are not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.