In Canada's western Arctic climate change is driving rapid ecological changes. Ongoing and locally-driven environmental monitoring, in which systematic observations of environmental conditions are recorded and synthesized, is required to understand and respond to climate change and other human impacts. Indigenous peoples’ traditional ecological knowledge is increasingly used as the basis for regional monitoring, as there is a need for detailed, place-specific information that is consistent with local ways of understanding and interacting with the environment. In this project, participatory multimedia mapping was used with Teetł'it Gwich'in land users and youth from Fort McPherson, Northwest Territories, Canada to record information about local environmental conditions and changes. Gwich'in monitors made trips on the land to document environmental conditions and changes using geotagged photo and video observations. Subsequently, land users provided detailed information about each observation in follow-up interviews, which were added to a web-based map displaying participants’ photos and videos. In this paper, we present the outcomes from the first year of research, explore the diverse types of knowledge this approach can contribute to environmental monitoring, and identify areas of convergence between traditional ecological knowledge and scientific research in the Arctic. Our work shows that this approach can make an important contribution to monitoring environmental changes associated with climate change in a way that is locally relevant and culturally appropriate.
To understand the economics of root aerenchyma formation in wetland plants, we investigated in detail the response of Alisma triviale to waterlogging. We hypothesized costs being associated with development of a large root air space. In three out-door pot experiments, seedlings (1 experiment) and mature plants (2 experiments) were grown under waterlogged and drained conditions for up to 2 months. Waterlogging promoted growth, and was associated with increased root porosity and decreased root density (fresh mass per volume). The increased formation of aerenchyma was associated with a higher root dry matter content for a given root density. Despite improved growth and earlier flowering, the waterlogged plants also showed signs of being constrained by the anoxic substrate, such as shallower roots, and a higher leaf dry matter content. The formation of aerenchyma was associated with costs, such as increased root dry matter content and reduced metaxylem vessel diameter. The faster growth of the seedlings under the waterlogged conditions, despite some signs of being stressed, was possibly a result of decreased requirements to allocate biomass below ground. In mature plants the increased aerenchyma allowed deeper root penetration, and ameliorated the effects of anoxia, reducing the differences in plant traits between the treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.