Huanglongbing (HLB) has been a serious threat to the citrus industry worldwide. After its first report in São Paulo State, the main citrus production area in Brazil, the disease spread to the States of Minas Gerais, Paraná and Mato Grosso do Sul. Attempts to cure plants or remiss disease symptoms and damages have been evaluated and showed to be inefficient and nonviable. The development of resistant or tolerant varieties to the bacteria or its insect vector, the Asian citrus psyllid Diaphorina citri, is still a long term challenge. Earlier HLB management has been based on preventive measures such as planting of healthy nursery trees, elimination of diseased trees, and vector control. Supported by both research data and citrus grower experiences, HLB management in São Paulo and Triângulo/Sudoeste Mineiro citrus belt has been improved from measures individually applied only into the orchards to regional disease management, including differentiated psyllid control in the orchards based on tree location and shoot flushing, area-wide coordinated control of psyllids, and removal of inoculum sources in noncommercial properties in the vicinity of commercial orchards. In addition, the negative impact of HLB on orchard production and longevity has been reduced with wide adoption of better cultural practices such as high-density planting, irrigation, and adequate nutrition. Unlike in other countries where HLB reached epidemic levels, the management of HLB in São Paulo and Triângulo/Sudoeste Mineiro citrus belt has been considered a success case and has ensured the maintenance of citrus production and competitiveness of the Brazilian citrus industry while new, more durable, and sustainable measures are not yet available.
Under laboratory conditions, mating activity in Asian citrus psyllid (ACP) started 4 days after emergence, peaked at day 7, and showed a clear window of activity starting 8 h into the photophase and extending through the first hour of the scotophase. We confirmed that ACP males are attracted to emanations from conspecific females. Traps loaded with a candidate compound enriched with female extract, lignoceryl acetate (24Ac), at various doses were active only after being deployed for several weeks in the field, suggesting that a degradation product, not the test compound, was the active ingredient(s). Lignocerol, a possible product of 24Ac degradation, was not active, whereas acetic acid, another possible degradation product, was found in the airborne volatile collections from lures matured under field conditions and detected in higher amounts in volatiles collected from females at the peak of mating activity than in male samples. Acetic acid elicited dose-dependent electroantennographic responses and attracted ACP males, but not females, in Y-type and 4-way olfactometers. Field tests showed that acetic acid-baited traps captured significantly more males than control traps. Surprisingly, captures of females in acetic acid-baited traps were also higher than in control traps, possibly because of physical stimuli emitted by captured males.
Novel, suitable and sustainable alternative control tactics that have the potential to reduce migration of Diaphorina citri into commercial citrus orchards are essential to improve management of huanglongbing (HLB). In this study, the effect of orange jasmine (Murraya paniculata) as a border trap crop on psyllid settlement and dispersal was assessed in citrus orchards. Furthermore, volatile emission profiles and relative attractiveness of both orange jasmine and sweet orange (Citrus × aurantium L., syn. Citrus sinensis (L.) Osbeck) nursery flushes to D. citri were investigated. In newly established citrus orchards, the trap crop reduced the capture of psyllids in yellow sticky traps and the number of psyllids that settled on citrus trees compared to fallow mowed grass fields by 40% and 83%, respectively. Psyllids were attracted and killed by thiamethoxam-treated orange jasmine suggesting that the trap crop could act as a ‘sink’ for D. citri. Additionally, the presence of the trap crop reduced HLB incidence by 43%. Olfactometer experiments showed that orange jasmine plays an attractive role on psyllid behavior and that this attractiveness may be associated with differences in the volatile profiles emitted by orange jasmine in comparison with sweet orange. Results indicated that insecticide-treated M. paniculata may act as a trap crop to attract and kill D. citri before they settled on the edges of citrus orchards, which significantly contributes to the reduction of HLB primary spread.
Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-β-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-β-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-β-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.
This study clearly demonstrates that processed kaolin interferes negatively with different aspects of the host plant finding ability of D. citri. These findings suggest that processed kaolin has a high potential to reduce huanglongbing primary infection. © 2018 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.