Rheological and photophysical data are presented for a hydrophobically modified alkali-soluble copolymer, of a constitution similar to materials currently employed as rheology modifiers in water-borne coatings. The copolymer comprises a polyelectrolyte backbone bearing ethoxylate side chains capped with complex alkylaryl groups of a high molar volume. In aqueous alkaline media, the hydrophobes associate dynamically, the topology of the network so formed being dependent on the polymer concentration. Photophysical studies, employing pyrene as a hydrophobic fluorescent probe, indicate the presence of hydrophobic associations. At concentrations below the coil overlap concentration, c*, these associations are predominantly intramolecular. At higher polymer concentrations, intermolecular interactions become more probable. This change in network topology is in qualitative agreement with previous theoretical considerations of associative polymer systems and is reflected in an unusually high concentration dependence of the zero shear viscosity, with η0∼c8. Evidence for shear-induced structuring in steady shear, large amplitude oscillatory shear, and parallel superposed steady and dynamic shear is presented. Such structuring is more pronounced at lower polymer concentrations, consistent with the formation of intermolecular associations at the expense of intramolecular. In contrast to the simple linear telechelic associative polymers considered in a number of previous studies, the network dynamics of the polymer are no longer represented by a single characteristic time. This deviation from a classical Maxwellian response in oscillatory shear is interpreted as a broadening of the relaxation spectrum, arising from the coexistence of both hydrophobic associations and topological entanglements. Mechanistically, stress relaxation is better envisaged in terms of “hindered reptation” [Liebler et al. (1991)] of the chains, rather than Rouse-like behavior moderated purely by the hydrophobe disengagement rate [Annable et al. (1993)].
In this series of two papers we study the thermodynamics of binary hard chain mixtures. Here, a generalized Flory-dimer (GF-D) equation of state is derived for binary hard chain mixtures composed of chains of variable length and segment diameter. Compressibility factors predicted by the GF-D equation of state developed here and by the previously derived generalized Flory equation of state are compared to previous Monte Carlo results for hard monomer/hard chain mixtures, and to new molecular dynamics (MD) hard monomer/hard chain and hard chain/hard chain mixture simulation results. Compared to the MD simulations, the GF-D theory is found to be quite accurate, with an average error of about 3% at liquid-like densities.
We present new perturbation theory equations of state for square-well dimer fluids, square-well dimer mixtures, square-well dimer/monomer mixtures and square-well heteronuclear dumbbell fluids. Our first-and second-order perturbation terms are based on Barker and Henderson's local compressibility approximation and Chang and Sandler's perturbation theory, respectively. The perturbation approach requires knowledge of the radial distribution functions of the reference hard-dimer fluid and hard dimer/monomer mixture, which are obtained from molecular dynamics simulation. For mixtures we use one fluid mixing rules to approximate the average mixture structure and perturbation parameters. The predictions of the perturbation theory are compared to the compressibility factors obtained from discontinuous canonical molecular dynamics simulation, an adaptation of Anderson's canonical ensemble molecular dynamics method to the case in which the potential is discontinuous.
The generalized Flory (GF) and generalized Flory-dimer (GFD) equations of state have been extended to fluids containing hard heteronuclear chain-like molecules. Compressibility factor expressions have been derived for block, alternating and random ‘‘copolymer’’ fluids. The effect of composition and the relative size of the segments of a heteronuclear chain on the compressibility factor are studied. We have also performed molecular dynamics computer simulations on these systems using an extension of Rapaport’s algorithm in which the chains are effectively treated as hard spheres of different sizes held together by invisible strings. The compressibility factors predicted by the GFD theory for heteronuclear chain fluids are in very good agreement with our computer simulation results. The predictions of Chiew’s Percus Yevick theory are also in very good agreement with our computer simulation results on block copolymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.