Abstract. The deciduous Vaccinium myrtillus and the evergreen Vaccinium vitis‐idaea were subjected to five removal treatments of understorey layers: control, removal of the moss layer, removal of the field layer, removal of both moss and field layers and removal of moss, field and humus layers. A second factor, sowing, was included to investigate sexual reproduction after disturbance. Density of new ramets and seedlings and growth of annual shoots were studied for the first two growing seasons, whereas cover was measured for five growing seasons after disturbance treatment. Initially, vegetative production of new ramets and species cover increased rapidly in all disturbed plots, except for the most severe treatment, in which production of new ramets was virtually absent throughout the study. Full recovery following removal of the field layer only or both field and moss layers was reached after four years for V. myrtillus. V. vitis‐idaea recovered more quickly, after one year (removal of field layer only) and four years (removal of field and moss layers). The relative growth of V. myrtillus and V. vitis‐idaea increased in the latter treatment in terms of production of annual shoots and length of annual shoots, respectively. Seedling density increased after sowing in the most severe treatment. The results underscore the importance of vegetative growth for recovery of these species at moderate‐level disturbances. The high rate of sexual reproduction in the most severe treatment implies that strong mechanical disturbance is needed to enhance the establishment of new genotypes in these species.
We studied the immediate effects of retention-felling on the occurrence of tree uprooting in two different types of boreal spruce forest in Finland to determine whether susceptibility to uprooting is dependent on the biotope. During the first post-treatment year, 7.1% of the trees in the paludified forest type and 1.8% in the upland forest type were uprooted. During the 2 following post-treatment years, uprooting percentages increased considerably (39.3% in the paludified type and 11.5% in the upland type in year 2; 48.3% in the paludified type and 15.2% in the upland type in year 3). Norway spruce (Picea abies (L.) Karst.), the dominant species in both forest types, was the species most susceptible to uprooting. The high uprooting rate in the paludified groups was probably caused by an interaction between the rocky ground and moist overlying peat layer with the shallow root system of P. abies. As paludified forest biotopes are generally recognized to have high biodiversity, the use of green-tree retention in these biotypes may enhance the continuum and survival of sensitive species. Moreover, because of the high level of uprooting, green-tree retention in paludified forest types can quickly and more naturally help restore levels of coarse woody debris.
We studied the effects of patch retention felling and soil scarification by harrowing on the coverage and species richness of epixylic species in boreal Norway spruce (Picea abies) forests in Southern Finland. The epixylics were investigated from both the retention tree groups (RTGs) and the surrounding felling areas before and after fellings and after scarification on consecutive years. The cover percentage of all included species groups was shown to decrease after the felling, especially in the felling areas (vascular plants, −0.4%; mosses, −27.8%; liverworts, −4.0%; and lichens,−2.1%). The decrease was considerable also in the RTGs. The amount of dead moss increased in both the areas indicating microclimatic changes. Species richness also declined rapidly after the first year, especially in the felling areas (vascular plants, −2.2%; mosses, −27.3%; liverworts, −30.3%; and lichens, −22.9%). Scarification also decreases covers and species richness of bryophytes. After the second year, the covers of the species groups generally started to regain, especially in the untreated RTGs. The size of RTG was in positive correlation with the total species number. Another main result indicates that it is possible to maintain much higher initial vegetation abundance and diversity in the RTGs than in the felling areas. Coarse woody debris formed by the frequent tree uprootings may also enhance the long-term survival of epixylics over forest regeneration period. RTGs should be at least 10 times larger than the size used in current Finnish forestry, so that they could function as species refugia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.