Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.
Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.
Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.
a b s t r a c tWe derive a combinatorial equilibrium for bounded juggling patterns with a random, q-geometric throw distribution. The dynamics are analyzed via rook placements on staircase Ferrers boards, which leads to a stationary distribution containing q-rook polynomial coefficients and q-Stirling numbers of the second kind. We show that the stationary probabilities of the bounded model can be uniformly approximated with the stationary probabilities of a corresponding unbounded model. This observation leads to new limit formulae for q-analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.