This paper studies the limits of a spatial random field generated by uniformly scattered random sets, as the density $\lambda$ of the sets grows to infinity and the mean volume $\rho$ of the sets tends to zero. Assuming that the volume distribution has a regularly varying tail with infinite variance, we show that the centered and renormalized random field can have three different limits, depending on the relative speed at which $\lambda$ and $\rho$ are scaled. If $\lambda$ grows much faster than $\rho$ shrinks, the limit is Gaussian with long-range dependence, while in the opposite case, the limit is independently scattered with infinite second moments. In a special intermediate scaling regime, there exists a nontrivial limiting random field that is not stable.Comment: Published at http://dx.doi.org/10.1214/009117906000000700 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
This paper considers a parallel system of queues fed by independent arrival streams, where the service rate of each queue depends on the number of customers in all of the queues. Necessary and sufficient conditions for the stability of the system are derived, based on stochastic monotonicity and marginal drift properties of multiclass birth and death processes. These conditions yield a sharp characterization of stability for systems where the service rate of each queue is decreasing in the number of customers in other queues, and has uniform limits as the queue lengths tend to infinity. The results are illustrated with applications where the stability region may be nonconvex.
This paper studies a statistical network model generated by a large number of randomly sized overlapping communities, where any pair of nodes sharing a community is linked with probability q via the community. In the special case with q = 1 the model reduces to a random intersection graph which is known to generate high levels of transitivity also in the sparse context. The parameter q adds a degree of freedom and leads to a parsimonious and analytically tractable network model with tunable density, transitivity, and degree fluctuations. We prove that the parameters of this model can be consistently estimated in the large and sparse limiting regime using moment estimators based on partially observed densities of links, 2-stars, and triangles.
This paper generalizes the notion of stochastic order to a relation between probability measures over arbitrary measurable spaces. This generalization is motivated by the observation that for the stochastic ordering of two stationary Markov processes, it suffices that the generators of the processes preserve some, not necessarily reflexive or transitive, subrelation of the order relation. The main contributions of the paper are: a functional characterization of stochastic relations, necessary and sufficient conditions for the preservation of stochastic relations, and an algorithm for finding subrelations preserved by probability kernels. The theory is illustrated with applications to hidden Markov processes, population processes, and queueing systems.
Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.