Polyphenols of phytochemicals are thought to exhibit chemopreventive effects against cancer. These plant-derived antioxidant polyphenols have a dual nature, also acting as pro-oxidants, generating reactive oxygen species (ROS), and causing oxidative stress. When studying the overall cytotoxicity of polyphenols, research strategies need to distinguish the cytotoxic component derived from the polyphenol per se from that derived from the generated ROS. Such strategies include (a) identifying hallmarks of oxidative damage, such as depletion of intracellular glutathione and lipid peroxidation, (b) classical manipulations, such as polyphenol exposures in the absence and presence of antioxidant enzymes (i.e., catalase and superoxide dismutase) and of antioxidants (e.g., glutathione and N-acetylcysteine) and cotreatments with glutathione depleters, and (c) more recent manipulations, such as divalent cobalt and pyruvate to scavenge ROS. Attention also must be directed to the influence of iron and copper ions and to the level of polyphenols, which mediate oxidative stress.
The in vitro cytotoxicology of triclosan, the active ingredient in some mouthrinses and dentifrices used in the prevention and treatment of gingivitis and plaque, was studied using the Smulow-Glickman (S-G) human gingival epithelial cell line. The 24 h midpoint cytotoxicity value was 0.05-0.06 mM triclosan as assessed with the neutral red (NR) assay. Triclosan is used in dentifrices in combination with either zinc citrate or sodium fluoride (NaF). The sequence of potencies of these test agents, as assessed with the NR assay, was triclosan>zinc citrate>>NaF; combinations of triclosan + zinc citrate and triclosan + NaF were additive in their toxicities. Damage to the integrity of the plasma membrane, as assessed by the leakage of lactic acid dehydrogenase during a 3-h exposure, was initially evident with 0.1 mM triclosan. When exposed to triclosan for 3 d, a lag in the growth kinetics of the S-G cells was first observed at 0.01 mM triclosan. A reduction in attachment of S-G cells to dentin chips, previously exposed to triclosan for 1 h, was noted at 0.25 mM triclosan and greater. Triclosan-induced cell death was apparently by apoptosis, as noted by fluorescence microscopy and DNA agarose gel electrophoresis of extracted oligonucleosomal fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.