In recent years, great emphasis has been placed on the role of arterial stiffness in the development of cardiovascular diseases. Indeed, the assessment of arterial stiffness is increasingly used in the clinical assessment of patients. Although several papers have previously addressed the methodological issues concerning the various indices of arterial stiffness currently available, and their clinical applications, clinicians and researchers still report difficulties in selecting the most appropriate methodology for their specific use. This paper summarizes the proceedings of several meetings of the European Network for Non-invasive Investigation of Large Arteries and is aimed at providing an updated and practical overview of the most relevant methodological aspects and clinical applications in this area.
The content of these European Society of Cardiology (ESC) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC Guidelines may be translated or reproduced in any form without written permission from the ESC. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC. Disclaimer. The ESC Guidelines represent the views of the ESC and were arrived at after careful consideration of the available evidence at the time they were written. Health professionals are encouraged to take them fully into account when exercising their clinical judgement. The guidelines do not, however, override the individual responsibility of health professionals to make appropriate decisions in the circumstances of the individual patients, in consultation with that patient, and where appropriate and necessary the patient's guardian or carer. It is also the health professional's responsibility to verify the rules and regulations applicable to drugs and devices at the time of prescription.
Blood pressure (BP) is a powerful cardiovascular (CV) risk factor that acts on the arterial wall and is responsible in part for various CV events, such as cerebrovascular accidents and ischemic heart disease. In clinical practice, 2 specific and arbitrary points of the BP curve, peak systolic BP (SBP) and end-diastolic BP (DBP), are used to define the CV risk factor. Because the goal of drug treatment of hypertension is to prevent CV complications, it appears likely that the totality of the BP curve, not simply 2 specific and arbitrary points, should be considered to act mechanically on the arterial wall and therefore should be used to propose an adequate definition of high BP.A current approach consists of considering the BP curve as the summation of a steady component, mean blood pressure (MBP), and a pulsatile component, pulse pressure (PP). 1 MBP, the product of cardiac output multiplied by total peripheral resistance, is the pressure for the steady flow of blood and oxygen to peripheral tissues and organs. The pulsatile component, PP, is the consequence of intermittent ventricular ejection from the heart. PP is influenced by several cardiac and vascular factors, but it is the role of large conduit arteries, mainly the aorta, to minimize pulsatility. In addition to the pattern of left ventricular ejection, the determinants of PP (and SBP) are the cushioning capacity of arteries and the timing and intensity of wave reflections. 1 The former is influenced by arterial stiffness, usually expressed in the quantitative terms of compliance and distensibility. 1 The latter result from the summation of a forward wave coming from the heart and propagating at a given speed (pulse wave velocity, or PWV) toward the origin of resistance vessels and a backward wave returning toward the heart from particular sites characterized by specific reflection coefficients. 1 Over the past few years, arterial stiffness and wave reflections have been widely investigated in old and/or hypertensive subjects for several reasons. First, whereas DBP was considered in the past as the better guide to determine disease severity, epidemiological studies have directed attention to SBP as a more informative CV risk factor, particularly in patients older than 50 years of age, and it has been shown that PP is an independent marker of CV risk, mainly for myocardial infarction. 2 Second, in subjects Ͼ50 years of age, ventricular ejection tends to be reduced, so that arterial stiffness and amplitude and timing of wave reflections become the main determinants of increased SBP and PP. Third, whereas drug control of DBP is consistently obtained in large populations of hypertensive patients, the ability to control SBP is observed much less frequently. 3 Finally, increased PP is also a predictor of CV risk in subjects with recurrent myocardial infarction and congestive heart failure. 2,4,5 From the hemodynamic factors that influence PP, 2 have been shown to independently predict CV risk: aortic stiffness, measured from aortic PWV, 6,7 and early return of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.