It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.
SummaryThis article describes a method for determining the environmental load of Dutch private consumption. The method generates detailed information about consumption-related environmental impacts. The environmental load of households (direct) and production (indirect) was determined for 360 expenditure categories reported in the Dutch Expenditure Survey. The indirect environmental load was calculated with linked input-output tables covering worldwide production and trade. The environmental load per Euro turnover of industries was linked to consumer expenditures. With this method we can quantify several types of environmental load per expenditure category and per economic production region.It was found that food production, room heating, and car use are the most important elements in the environmental load of Dutch private consumption. The impacts taking place abroad were-with the exception of emission of greenhouse gases and road traffic noise-found to be larger than domestic impacts. Most land use was found to take place in developing (non-OECD) countries, whereas most emissions occur in industrialized (OECD) countries.
The planetary boundaries (PBs) framework proposes global quantitative precautionary limits for human perturbation of nine critical Earth system processes. Together they define a global safe operating space for human development. Translating the global limits to the national level increases their policy relevance. Such translation essentially divides up the global safe operating space. What is considered fair distribution is a political decision and there is no globally agreed principle that can be applied. Here, we analyse the distributional consequences of alternative perspectives on distributive fairness. We scale the global limits of selected PBs to resource budgets for the EU, US, China and India, using three allocation approaches from the climate change literature. Furthermore, we compare the allocated budgets to 2010 environmental footprints of the four economies, to assess their performance with respect to the selected PBs. The allocation approaches are based on (1) current shares of global environmental pressure ('grandfathering'); (2) 'equal per capita' shares, and (3) 'ability to pay' to reduce environmental pressure. The results show that the four economies are not living within the global safe operating space. Their 2010 environmental footprints are larger than the allocated budgets for all approaches and parameterisations analysed for the PBs for climate change and biogeochemical flows, and, except for India, also for the PB for biosphere integrity. Grandfathering was found to be most favourable for the EU and US for all PBs, and ability to pay as least favourable. For climate change and biogeochemical flows, ability to pay even resulted in negative resource budgets for the two economies. In contrast, for China and India, equal per capita allocation and ability to pay were most favourable. Results were sensitive to the parameterisation. Accounting for future population growth in the equal per capita approach benefits India, with lower budgets for the EU, US and China, while accounting for future economic growth in ability to pay benefits the EU and US, with lower budgets for China and India. Our results underline the need for all four economies to act, while hinting at diverging preferences for specific allocation approaches. The methodology and results may help countries to define policy targets in line with global ambitions, such as those defined by the Sustainable Development Goals (SDGs), accounting for differences in countries' circumstances and capacities. Further attention is required for PB-specific allocation approaches and integration of biophysical and socioeconomic considerations in the allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.