The high sulfide ion polarization is known to cause increased ionic conductivity in the solid sulfide-type electrolytes. Three groups of sulfide-based solid-state electrolytes, namely, Li-P-S, Li6PS5X (X: Cl, Br, and I), and Li x MP x S x (M: Sn, Si, and Al) were reviewed systematically from several aspects, such as conductivity, stability, and crystal structure. The advantages and disadvantages of each electrolyte were briefly considered and compared. The method of the preparation was presented with experimental and theoretical studies. The analysis that has been carried out showed that the solid electrolyte Li10GeP2S12 is superior to others with an ionic conductivity of 12 × 10−2 S cm−1. This conductivity is comparable to that of conventional liquid electrolytes. However, the availability and high price of Ge are the problems encountered. Furthermore, because sulfide-based solid electrolytes have low chemical stability in ambient humidity, their handling is restricted to inert gas environments. When solid sulfide electrolytes are hydrolyzed, structural changes occur and H2S gas is produced. The review’s objective includes presenting a complete knowledge of sulfide-solid electrolyte synthesis method, characteristics, such as conductivity, structure, and stability, as well as generating more efficient and targeted research in enhancing the performance of the chemical substance.
Measuring the performance of business processes is already a main concern for both faculty and enterprise players, since organizations are motivated to reach the productivity stage. Employing a performance achievement framework for the relationship between business incubator success factors will guarantee connection with commercial schemes, which support a high level of performance indicators in successful business incubator models. This research employs a quantitative approach, with the data analyzed using the IBM SPSS version 23 and Smart PLS version 3 statistical software packages. Employing a sample of 95 incubator managers from 19 universities which geographically located in Indonesia, it is shown that the image of business incubator factors has a positive effect on incubator performance. The study investigates the relationship between incubator performance and business incubator success factors in Indonesia. It was found that IT, as part of the business incubators' facets/abilities, partially supports their performance; that the entry criteria directly support the performance of the incubators; that mentoring networks also support the performance, with good infrastructure systems as a moderating factor; that funding supports the performance of business incubators, also with good infrastructure systems as a moderating factor; and that university regulations and government support and protection enhance the performance of business incubators, with credits and rewards as a moderating factor. In addition,
Li-ion secondary battery is highly recommended as a power source to highly advanced battery electric vehicles. Among various types, the lithium nickel cobalt aluminum oxide (NCA) battery is considered suitable for high energy and power application. In this study, the NCA cathode material LiNi0.89Co0.08Al0.03O2 was produced via the oxalate co-precipitation technique to reduce the overall production cost and process complexity. Oxalic acid and a small amount of sodium hydroxide were used as the precipitant and pH regulator, respectively. Homogenous and loose metal oxalate precipitate formation was confirmed by X-ray diffraction (XRD), scanning electron microscopy, and Fourier-transform infrared spectroscopy analysis. XRD patterns of the as-obtained micron-sized NCA showed a well-layered hexagonal structure. The electrochemical properties of the cathode in the full cell were thoroughly examined. The specific discharge capacity of the as-obtained NCA in NCA/LiPF6/graphite at a current rate of 20 mA/g was 142 mAh/g. The as-prepared NCA sample had capacity retention of 80% after being charged and discharged at 0.1 A/g for 101 cycles. Scaling up of NCA production process to 2 kg per batch was conducted and evaluation of NCA product quality was performed by material characterization. Based on the overall results and considering the overall process, such an approach is expected to be developed and improved for future large-scale production purposes.
The high demand for efficient energy devices leads to the rapid development of energy storage systems with excellent electrochemical properties, such as long life cycles, high cycling stability, and high power density. SC is postulated as a potential candidate to fulfill this demand. The combination of graphene and polyaniline can create SC electrodes with excellent electrical conductivity, high specific surface area, and high capacitance. The graphene/polyaniline hybrid electrodes represent an attractive means to overcome the major drawbacks of graphene or polyaniline non-hybrid (single) electrode materials. In this review article, the trend in the development of various graphene/polyaniline hybrid electrodes is summarized, which includes the zero-dimension graphene-quantum-dots/polyaniline hybrid, one-dimension graphene/polyaniline hybrid, two-dimension graphene/polyaniline hybrid, and three-dimension hydrogel-shaped graphene/polyaniline hybrid. Several strategies and approaches to enhance the capacitance value and cycling stability of graphene/polyaniline hybrid electrodes are discussed in this review article, such as the addition of transition metal oxides and metal-organic frameworks, and modification of graphene into functionalized-graphene. The performance of the electrodes prepared from the combination of graphene with other conducting polymers (i.e., polypyrrole, polythiophene, and polythiophene-derivatives) is also discussed.
As developing country with industrial revolution 4.0, agro-technology, Internet of Things (IoT), E-Commerce and logistics technology is an important point in Indonesia. Although there has been many agro-knowledge and information systems for famers, but a little information in integrating among agriculture, IoT and field monitoring systems (FMS) technology for farmers in Indonesia. RiTx or Agricultural Technology is one of application for farmers with integrating among agriculture, IoT and field monitoring system technology. RiTx provides realtime, localized soil and weather data and field-level agronomic intelligence, which support farmers to decide their decisions during planting until harvesting, so failure during planting season can be eliminated. The province of East Nusa Tenggara (NTT) is cluster of islands located in the south – eastern part of Indonesia. The monsoon season stretches from October to March each year. Outside of the monsoon season, the climate of NTT is relatively dry. This study focuses on applying FMS technology with IoT for agricultural precision. For this study, field monitoring system was set up in the field since 26 July 2017 in Kupang, NTT Province that is consisted of three main components, i.e., FieldRouter, Datalogger and the sensors. Here, there are several sensors that have been installed in the field, e.g., solar radiation, rain-gauge and soil moisture. As the results, the IT field monitoring system showed good performance and reliable for precision agriculture. The actual field conditions were monitored well in term of image, numeric, and graphical data acquisition. Based on monitored data, plant growth can be well monitored. In addition, dynamic changes of environmental parameters can be monitored as well. Finally, it can help farmers in the future, not only in Indonesia or South-East Asia but also in the world, so prosperity for farmers can be granted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.