No abstract
Gossip-based communication protocols are often touted as being robust. Not surprisingly, such a claim relies on assumptions under which gossip protocols are supposed to operate. In this paper, we discuss and in some cases expose some of these assumptions and discuss how sensitive the robustness of gossip is to these assumptions. This analysis gives rise to a collection of new research challenges.
Large-scale datacenters consume megawatts in power and cost hundreds of millions of dollars to equip. Reducing the energy and cost footprint of servers can therefore have substantial impact. Web, Grid, and cloud servers in particular can be hard to optimize, since they are expected to operate under a wide range of workloads. For our upcoming datacenter, we set out to significantly improve its power efficiency, cost, reliability, serviceability, and environmental footprint. To this end, we redesigned many dimensions of the datacenter and servers in conjunction. This paper focuses on our new server design, combining aspects of power, motherboard, thermal, and mechanical design. We calculate and confirm experimentally that our custom-designed servers can reduce power consumption across the entire load spectrum while at the same time lower acquisition and maintenance costs. Importantly, our design does not decrease the servers' performance or portability, which would otherwise limit its applicability.
We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an epsilon-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than epsilon in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than 5 x 10(21) entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published
Most proposed gossip-based systems use an ad-hoc design. We observe a low degree of reutilization among this proposals. We present how this limits both the systematic development of gossip-based applications and the number of applications that can benefit from gossip-based construction. We posit that these reinvent-the-wheel approaches poses a significant barrier to the spread and usability of gossip protocols. This paper advocates a conceptual design framework based upon aggregating basic and predefined building blocks (B 2). We show how to compose building blocks within our framework to construct more complex blocks to be used in gossipbased applications. The concept is further depicted with two gossip-based applications described using our building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.