The intermittency and discontinuous nature of power generation in Triboelectric Nanogenerators (TENGs) are arguably their most significant drawback, despite the promise demonstrated in low-power electronics. Herein, we introduce a novel technology to overcome this issue, in which, built-in systematic phase shifting of multiple poles is used to design a pseudo direct-current TENG. Unlike previous attempts of constructing near direct-current TENGs that base on the segmentation of electrodes of a sliding mode TENG, this technology introduces a new method that depends on planned excitation of constituent TENG units at different time intervals to obtain the necessary phase shifts, achieved by their structural design that contains an asymmetric spatial arrangement. Therefore, the direct current generation for TENG, which was previously limited to the sliding mode TENG units, are expanded to contact-mode TENGs. The technology allows for continuous and smooth operation of the driven loads and paves the way for a new dawn in energy scavenging from mechanical sources. We use the distance-dependent electric field (DDEF) platform to design the systematic phase shifting technology, which is experimentally demonstrated via a freestanding mode TENG (FSTENG) based design, to power a number of prototype devices. The resultant power output of the TENG indicates a crest factor close to 1.1 at relatively low frequencies, the best reported values for TENGs with contact-mode basic units, to date. This 2 work provides a highly awaited solution to overcome the intermittency and sporadic nature of TENG outputs, thus, promoting the field towards powering next generation autonomous and mobile electronics.
Printing of highly conductive tracks at low cost is of primary importance for the emerging field of flexible, plastic, and large-area electronics. Commonly, this is achieved by printing of metallic conductive inks, often based on Ag or Cu nanoparticles dispersed in organic solvents. The solvents, which must be safely removed, have particular storage and handling requirements, thus increasing the process costs. By using water-based inks containing micron-sized silver flakes, both material and process costs can be reduced, making these inks attractive for industrial applications. However, the sintering of flake inks requires higher temperatures than nano-sized inks owing to the particles' smaller surface area-to-volume ratio, meaning that when cured thermally the conductivity of many flake inks is lower than nanoparticle alternatives. This problem can be addressed by the application of visible light photonic curing; however, the substrate must be protected and so process parameters must be defined for each material/substrate combination. Here, we report results of a large-scale trial of photonic curing of aqueous flake silver inks on poly(ethylene terephthalate) substrates in an industrial setting. The resistivity of printed patterns after an optimized photocuring regime matched those reported for typical nanoparticle inks; on the order of 100 μΩ cm depending on substrate and geometry. Scanning electron microscopy revealed evidence for structural changes within the printed films consistent with localized melting and necking between adjacent particles, leading to an improved percolation network. Furthermore, in the large-scale industrial trial employing screen-printed silver lines, the manufacturing yield of conductive lines was increased from 44% untreated to 80% after photocuring and reached 100% when photocuring was combined with thermal curing. We believe this to be the first reported observation of an increase in the yield of printed electronic structures following photocuring. We propose a crack-healing mechanism to explain these increases in yield and conductivity. We further report on the effects of the photonic curing on the mechanical bending stability of the printed conductors and discuss their suitability for wearable applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.