As part of a program to determine the physical possibility of expanding the number of types of base pairs in DNA, the pairing stabilities of the analog bases 6-thioguanine (GS) and 5-methyl-2-pyrimidinone (TH) in oligodeoxynucleotides were measured. Procedures were developed to synthesize oligodeoxynucleotides with the analog bases. The sequences of the synthesized oligomers were T-C-G-A-C-G-G-X-Y-C-C-G. An enzymatic procedure was developed to measure relative association constants of oligomer pairs with the self complementary reference oligomer, X = A and Y = T, K(T/A) = K. The results were K(C/G) = (5 +/- .5)K, K(TH/GS) = K/(1 +/- .5), K(T/G) = K/(9 +/- 3), K(TH/G) = K/(25 +/- 5), K(C/GS) less than K/30, K(TH/A) less than K/40, K(T/GS) less than K/40, K(C/A) less than K/40. The results with the standard bases are consistent with other methods of measurement. The stability of the base pair GS/TH is approximately the same as the standard base pair A/T.
The kinetics and the fidelity of replication of the base pair 6-thioguanine (Gs)/5-methyl-2-pyrimidinone (Th) have been determined by using defined oligomers with the large Klenow fragment of Escherichia coli DNA polymerase I. The insertion efficiency, Vmax/Km (min-1 microM-1), of Th opposite Gs is 1.5 and the insertion efficiency of Gs opposite Th is 0.7. By comparison, the insertion efficiencies of C opposite G and G opposite C are 0.5 and 1.5. The insertion efficiency of the next base, A opposite T, is 2 times greater after the base pair Gs/Th than after G/C. The fidelity of replication with respect to thymine and adenine has misinsertion frequencies, or ratios of the insertion efficiency of the "wrong" base to the "right" base, of 7 x 10(-4) for T opposite Gs (T/Gs), 4 x 10(-6) for T/Th, and a maximum stable misinsertion frequency of 4 x 10(-4) for A/Th. No detectable elongation occurs after an A is inserted opposite a Gs. These values are similar to the misinsertion frequencies of G and C with T and A. The maximum stable misinsertion frequencies with G and C are 4 x 10(-2) for G/Th, 3 x 10(-2) -7 x 10(-3) for Gs/C, and 2.6 x 10(-1) for C/Gs, and the misinsertion frequency is < 1 x 10(-3) for Th/G. The kinetics results and molecular modeling suggest modifications to the Gs/Th base pair that may provide higher levels of fidelity of replication with respect to C and G.
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs T(H) (5-methyl-2-pyrimidinone)/H(S) (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3'-->5' exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3'-->5' exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3'-->5' exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3'-->5' exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair T(H)/H(S) was 0.1 times that of A/T for T(H) in the template and 0.01 times that of A/T for H(S) in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or T(H) opposite a template hypoxanthine, 2x10(-6); H(S) opposite a template cytosine, <3x10(-4). The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template T(H), showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.