Objective To develop and internally validate a model that predicts the outcome of an intended vaginal birth after caesarean (VBAC) for a Western European population that can be used to personalise counselling for deliveries at term.Design Registration-based retrospective cohort study.Setting Five university teaching hospitals, seven non-university teaching hospitals, and five non-university non-teaching hospitals in the Netherlands.Population A cohort of 515 women with a history of one caesarean section and a viable singleton pregnancy, without a contraindication for intended VBAC, who delivered at term.Methods Potential predictors for a vaginal delivery after caesarean section were chosen based on literature and expert opinions. We internally validated the prediction model using bootstrapping techniques.Main outcome measures Predictors for VBAC. For model validation, the area under the receiver operating characteristic curve (AUC) for discriminative capacity and calibrationper-risk-quantile for accuracy were calculated.Results A total of 371 out of 515 women had a VBAC (72%). Variables included in the model were: estimated fetal weight greater than the 90 th percentile in the third trimester; previous non-progressive labour; previous vaginal delivery; induction of labour; pre-pregnancy body mass index; and ethnicity. The AUC was 71% (95% confidence interval, 95% CI = 69-73%), indicating a good discriminative ability. The calibration plot shows that the predicted probabilities are well calibrated, especially from 65% up, which accounts for 77% of the total study population. ConclusionWe developed an appropriate Western European population-based prediction model that is aimed to personalise counselling for term deliveries.
Several experimental models of osteoarthritis in rats are used to study the pathophysiology of osteoarthritis. Many mechanically induced models have the limitation that permanent joint instability is induced by, for example, ligament transection or meniscal damage. This permanent instability will counteract the potential beneficial effects of therapy. The groove model of osteoarthritis uses a one‐time trigger, surgically induced cartilage damage on the femoral condyles, and has been validated for the canine tibia‐femoral compartment. The present study evaluates this model for the rat knee joint. The articular cartilage of the weight bearing surface of both femoral condyles and trochlea were damaged (grooved) without damaging the underlying subchondral bone. Severity of joint degeneration was histologically assessed, in addition to patella cartilage damage, and subchondral bone characteristics by means of (contrast‐enhanced) micro‐CT. Mild histological degeneration of the surgically untouched tibial plateau cartilage was observed in addition to damage of the femoral condyles, without clear synovial tissue inflammation. Contrast enhanced micro‐CT demonstrated proteoglycan loss of the surgically untouched patella cartilage. Besides, a more sclerotic structure of the subchondral bone was observed. The tibia‐femoral groove model in a rat results in mild knee joint degeneration, without permanent joint instability and joint inflammation. This makes the rat groove model a useful model to study the onset and progression of post‐traumatic non‐inflammatory osteoarthritis, creating a relatively sensitive model to study disease modifying osteoarthritic drugs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:496–505, 2017.
Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Na v 1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.